Замечание. Рис. 103. Схемы ультразвуковых уровнемеров, в которых осуществляется первый (а), второй (б) и третий (в) режимы работы: / — излучатель; 2 — приемник

А б в

Рис. 103. Схемы ультразвуковых уровнемеров, в которых осуществляется первый (а), второй (б) и третий (в) режимы работы: / — излучатель; 2 — приемник

Первый режим весьма похож на работу фотоэлектрического преобразователя: ультразвуковой излучатель и приемник (детектор) монтируются внутри резервуара и располагаются строго друг против друга так, что между ними образуется прямой путь прохождения ультразвуковой волны в газе (рис. 5.103, а). При заполнении пространства между двумя вибраторами жидкостью или сыпучим материалом ультразвуковой излучатель посылает сигнал, и ультразвуковые волны весьма существенно поглощаются жидкостью или сыпучим материалом. Если сыпучий материал или жидкость освобождает траекторию луча ультразвука, сигнал гаснет. Этот режим работы ультразвуковых преобразователей используется только для определения дискретных уровней жидкости, т. е. для сигнализации предельных величин. Такой способ подачи ультразвуковых сигналов пригоден для измерения уровня сыпучих материалов.

Для измерения уровня жидкостей более удобен второй режим работы ультразвуковых преобразователей, основанный на измерении времени прохождения сигнала с использованием принципа эхолота (рис. 5.103, б). Электрический импульс пьезоэлектрическим вибратором преобразуется в ультразвуковой импульс, который излучается в жидкость и отражается пограничным слоем жидкость-воздух. Эхо поступает на аналогичный пьезоэлектрический вибратор и преобразуется в электрический импульс. Оба импульса, посланный и отраженный, попадают с определенным интервалом на вход усилителя.

Тогда уровню жидкости соответствует время между излучением (моментом посылки импульса) и приемом отраженного ультразвукового импульса от поверхности жидкость—воздух до ультразвукового преобразователя:

где— расстояние от излучателя до поверхностного раздела фаз; — скорость распространения ультразвука в измеряемой среде. Скорость распространения ультразвука при любой температуре жидкости (воды) можно рассчитать по эмпирической формуле:

где— температура жидкости (воды),°С.

Пауза между двумя последовательно посылаемыми импульсами определяется выражением

Принципиальная схема ультразвукового уровнемера, работающего во втором режиме ультразвуковых преобразователей, приведена на рис. 104.

Рис. 104. Принципиальная схема ультразвукового уровнемера.

Уровнемер состоит из пьезоэлектрического преобразователя (вибратора) 2, установленного в резервуаре 1, электронного блока 3 и вторичного измерительного прибора 8 (на рисунке — автоматический потенциометр). Электронный блок включает в себя генератор 7, задающий частоту повторения импульсов; генератор импульсов 4, посылаемых в жидкость, уровень которой измеряется; приемного устройства-усилителя 5; измерителя времени 6. Генератор 7, задающий частоту повторения импульсов, управляет работой генератора импульсов 4 и измерителем времени 6. Генератор импульсов 4 вырабатывает электрические импульсы с определенной частотой повторения, которые преобразуются в ультразвуковые с помощью пьезоэлектрического преобразователя 2, установленного с внешней стороны дна резервуара. Распространяясь в жидкой среде, ультразвуковые импульсы отражаются от поверхности жидкости (от границы раздела жидкость—газ) и поступают на тот же пьезометрический преобразователь. Отраженные импульсы после обратного преобразования в электрические усиливаются и формируются усилителем 5, а затем подаются на измеритель времени. Выходным сигналом измерительной схемы является постоянное напряжение, поступающее на вход вторичного прибора 8 (например, автоматического потенциометра).

При вычислении уровня жидкости необходимо принимать во внимание скорость звука в среде между преобразователем и поверхностью жидкости. Конструктивно ультразвуковой излучатель и детектор могут располагаться раздельно (см. рис. 103, б) или в одном корпусе (см. рис. 104).

Третий режим работы ультразвуковых преобразователей показан на рис. 5.103, в. Внутри резервуара размещают эмиттер, излучающий ультразвуковые волны в пространстве над поверхностью жидкости. В этом случае ультразвуковые колебания оказываются в резонансе с колебаниями полости над поверхностью жидкости или в резонансе с гармониками собственных колебаний этой полости. Уровень жидкости определяется измерением частоты новых колебаний, поскольку при разном уровне жидкости резонансная частота оказывается различной.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: