Гидравлические исполнительные механизмы

Замечание

В динамическом отношении МИМ в области частот 0...0,3 рад/с рассматривают как последовательное соединение статического звена первого порядка с небольшой постоянной времени (порядка нескольких секунд) и усилительного звена (с зоной гистерезиса 2... 10 %). При длине пневмопровода более 100...150 м МИМ снабжают усилителями мощности и охватывают жесткой отрицательной обратной связью по перемещению РО. При использовании таких позиционеров МИМ рассматривают как статическое звено нулевого порядка (усилительное), не влияющее на динамические характеристики пневматического регулятора и системы управления в целом.

Поршневые ИМ отличаются большим конструктивным разнообразием и применяются в тех случаях, когда требуются большой ход штока и большие перестановочные усилия. В поршневой исполнительный механизм (см. рис. 6.84, 6) управляющий сигнал в виде давления сжатого воздуха подается в цилиндр и перемещает поршень 1, шток которого соединен с РО.

Предназначены для преобразования сигнала (разности давления масла), поступающего от регулятора, в перемещение РО. Выпускаются два типа гидравлических исполнительных механизмов: прямого хода (с поступательным движением штока) и кривошипные (с поворотным устройством).

Поршневые исполнительные механизмы прямого хода состоят из цилиндра с поршнем. Масло под высоким давлением подается в цилиндр и перемешает поршень, шток которого соединен со штоком РО. Входным сигналом поршневого ИМ, соответствующим командному сигналу регулятора, является объемный расход масла F, а выходным — перемещение штока h. Взаимосвязь между ними выражается уравнением:

где А — площадь поперечного сечения цилиндра.

Таким образом, поршневой гидравлический ИМ является интегрирующим звеном.

При соединении штока с кривошипом получается кривошипный ИМ, управляющий поворотными (заслоночными) регулирующими органами.

Пневматические и гидравлические ИМ обладают рядом преимуществ перед электрическими ИМ: высокой надежностью, большим ресурсом работы, возможностью плавного изменения выходных параметров в широком диапазоне, простотой преобразования энергии потока жидкости или газа в механическую мощность на выходе ИМ, устойчивостью к вибрации.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: