Первые ЭВМ

Вычислительные устройства до 1930-х гг.

В 1880 г. Вильгодт Однер создает в России арифмометр с зубчаткой с переменным количеством зубцов, а в 1890 г. налаживает массовый выпуск усовершенствованных арифмометров, которые в первой четверти XX в. были основными математическими машинами, нашедшими применение во всем мире. Их модернизация "Феликс" выпускалась в СССР до 1950-х годов.

В конце XIX в. были созданы более сложные механические устройства. Самым важным из них было устройство, разработанное американцем Германом Холлеритом – табулятор Холлерита. Исключительность его заключалась в том, что в нем впервые была употреблена идея перфокарт и расчеты велись с помощью электрического тока. Это сочетание делало машину настолько работоспособной, что она получила широкое применение в свое время. Например, при переписи населения в США, проведенной в 1890 г., Холлерит, с помощью своих машин, смог выполнить за три года то, что вручную делалось бы в течении семи лет, причем гораздо большим числом людей. Холлерит основал компанию Tabulating Machine Company (TMC), позже переименованную в International Business Machines (IBM).

В 1904 г. русский и советский кораблестроитель, специалист в области механики, математик Алексей Николаевич Крылов (1863–1945) сконструировал первое механическое вычислительное устройство для решения дифференциальных уравнений.

С 1925 г. по 1927 г. Ванневар Буш с группой своих сотрудников построил интеграф, машину непрерывного действия, способную решать дифференциальные уравнения 1-го и 2-го порядка. С 1928 г. по 1930 г. В. Буш изобретает знаменитый дифференциальный анализатор – механическая интегрирующая машина, может решать дифференциальные уравнения 6-го порядка. Переводит ее на электронную элементную базу в середине 1930-х годах.

Лишь спустя 100 лет машина Ч. Бэббиджа привлекла внимание инженеров. В конце 1930-х гг. века немецкий инженер Конрад Цузе разработал первую двоичную цифровую машину Z1. В ней широко использовались электромеханические реле, то есть механические переключатели, приводимые в действие электрическим током. В 1941 г. Он создал машину Z3, полностью управляемую с помощью программы.

Во время Второй мировой войны, Великобритания достигла определенных успехов во взломе зашифрованных немецких переговоров. Код немецкой шифровальной машины «Энигма» был подвергнут анализу с помощью электромеханических машин, которые носили название «бомбы». Такая «бомба», разработанная Аланом Тьюрингом и Гордоном Уэлшманом (англ. Gordon Welchman), исключала ряд вариантов путем логического вывода, реализованного электрически. Большинство вариантов приводило к противоречию, несколько оставшихся уже можно было протестировать вручную. Первые перехваты передач были зафиксированы в 1941 году. Для взлома этого кода, в обстановке секретности, британцами Максом Ньюманом и Томми Флауэрсом была создана машина «Колосс» (Colossus). Эта машина стала первым полностью электронным вычислительным устройством. В нем использовалось большое количество электровакуумных ламп, ввод информации выполнялся с перфоленты. «Колосс» можно было настроить на выполнение различных операций булевой логики. Информация о существовании этой машины держалась в секрете до 1970-х гг. Уинстон Черчилль лично подписал приказ о разрушении машины на части, не превышающие размером человеческой руки. Из-за своей секретности, «Колосс» не упомянут во многих трудах по истории компьютеров.

В 1944 г. американец Говард Айкен на одном из предприятий фирмы IBM построил мощную по тем временам машину «Марк – 1». В этой машине для представления чисел использовались механические элементы – счетные колеса, а для управления применялись электромеханические реле.

Вторая мировая война вынуждала вести постоянные разработки автоматических вычислительных машин. Военная техника требовала быстрых математических расчетов, например, для систем наведения при управлении зенитным огнем. Механические калькуляторы не могли обеспечить нужной скорости вычислений, поэтому военные настаивали на проведении скорейших разработок и немедленной постройке электронных вычислительных машин.

В апреле 1943 г. был заключен контракт между Абердинским артиллерийским полигоном и Пенсильванским университетом на создание вычислительной машины, названной электронным цифровым интегратором и компьютером (ЭНИАК). Напряженная работа завершилась в конце 1945 года. ЭНИАК был предъявлен на испытания и успешно их выдержал. В начале 1946 г. машина начала считать реальные задачи. По размерам она была более впечатляющей, чем МАРК-1: 26 м в длину, 6 м в высоту, вес 35 тонн. Но поражали не размеры, а производительность – она в 1000 раз превышала производительность МАРК-1! Таков был результат использования электронных ламп!

5. I поколение ЭВМ (1946–1960)

В 1946 г. вышла в свет статья Джона фон Неймана, в которой были изложены принципы устройства и работы ЭВМ. Главный из них - принцип хранимой в памяти программы, согласно которому данные и программа помещаются в общую память машины. После этого ЭВМ стали делить на так называемые «поколения».

Первой работающей машиной с архитектурой фон Неймана стал манчестерский «Baby»Small-Scale Experimental Machine (Малая экспериментальная машина), созданный в Манчестерском университете в 1948 году; в 1949 году за ним последовал компьютер Манчестерский Марк I, который уже был полной системой, с трубками Уильямса и магнитным барабаном в качестве памяти, а также с индексными регистрами. Другим претендентом на звание «первый цифровой компьютер с хранимой программой» стал EDSAC, разработанный и сконструированный в Кембриджском университете. Заработавший менее чем через год после «Baby», он уже мог использоваться для решения реальных проблем. Многие считают, что Манчестерский Марк I / EDSAC / EDVAC стали «Евами», от которых ведут свою архитектуру почти все современные компьютеры.

В СССР, первая ЭВМ была создана в 1951 г. Называлась она МЭСМ - малая электронная счетная машина. Конструктором МЭСМ был Сергей Алексеевич Лебедев.

Первой советской серийной ЭВМ стала «Стрела», производимая с 1953 г. на Московском заводе счетно-аналитических машин. «Стрела» относится к классу больших универсальных ЭВМ с трехадресной системой команд. ЭВМ имела быстродействие 2000-3000 операций в секунду. В качестве внешней памяти использовались два накопителя на магнитной ленте. Компьютер состоял из 6200 ламп, 60 000 полупроводниковых диодов и потреблял 150 кВт энергии.

Первое поколение ЭВМ – ламповые машины 1950-х гг. Для ввода программ и данных использовались перфокарты и перфоленты. Т.к. внутренняя память машин была невелика, то они пользовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. Это были довольно громоздкие сооружения, содержащие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт. Программы для таких машин составлялись на языках машинных команд. Это довольно трудоемкая работа.

6. II поколение ЭВМ (1955–1964)

В 1960-х гг. транзисторы стали элементной базой для ЭВМ второго поколения. Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими. Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду. Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения.

Благодаря применению более совершенной элементной базы начали создаваться относительно небольшие ЭВМ, произошло естественное разделение вычислительных машин на большие, средние и малые.

В СССР были разработаны и широко использовались серии малых ЭВМ «Раздан», «Наири» (использовались в ХПИ). Уникальной по своей архитектуре была машина «Мир», разработанная в 1965 г. в Институте кибернетики Академии Наук УССР под руководством Виктора Михайловича Глушкова. Она предназначалась для инженерных расчетов, которые выполнял на ЭВМ сам пользователь без помощи оператора.

К средним ЭВМ относились отечественные машины серий «Урал», «М–20» и «Минск».

Но рекордной среди отечественных машин этого поколения и одной из лучших в мире была БЭСМ – 6, которая была создана коллективом академика С. А. Лебедева. Производительность БЭСМ – 6 была на два – три порядка выше, чем у малых и средних ЭВМ, и составляла более 1 млн. Операций в секунду. За рубежом наиболее распространенными машинами второго поколения были «Эллиот» (Англия), «Сименс» (ФРГ), «Стретч» (США).

Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах. Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы. Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них стали ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от модели машины, сделалось проще, понятнее, доступнее. Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

7. Третье поколение ЭВМ (1964–1971)

Очередная смена поколений ЭВМ произошла в 1960-х гг. при замене полупроводниковых приборов в устройствах ЭВМ на интегральные схемы. Интегральная схема (микросхема) – это небольшая пластинка кристалла кремния, на которой размещаются сотни и тысячи элементов: диодов, транзисторов, конденсаторов, резисторов и т. д.

Применение интегральных схем позволило увеличить количество электронных элементов в ЭВМ без увеличения их реальных размеров. Быстродействие ЭВМ возросло до 10 миллионов операций в секунду. Кроме того, составлять программы для ЭВМ стало по силам простым пользователям, а не только специалистам – электронщикам.

ЭВМ третьего поколения начали производиться с 1964 г., когда американская фирма IВМ приступила к выпуску системы машин IВМ-360. В Советском Союзе в 1970-х гг. начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ).

Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ. Появилась возможность выполнять одновременно несколько программ на одной машине Скорость работы наиболее мощных моделей ЭВМ достигла миллионов опер/сек. На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски Широко используются новые типы устройств ввода-вывода: дисплеи, графопостроители.

9. IV поколение ЭВМ (1971 – по сей день)

В процессе совершенствования микросхем увеличивалась их надежность и плотность размещенных в них элементов. Это привело к появлению больших интегральных схем (БИС), в которых на один квадратный сантиметр приходилось несколько десятков тысяч элементов. На основе БИС были разработаны ЭВМ следующего – четвертого поколения.

Благодаря БИС на одном крошечном кристалле кремния стало возможным разместить такую большую электронную схему, как процессор ЭВМ. Однокристальные процессоры впоследствии стали называться микропроцессорами. Первый микропроцессор был создан компанией Intel (США) в 1971 г. Это был 4-разрядный микропроцессор Intel 4004, который содержал 2250 транзисторов и выполнял 60 операций в секунду.

Микропроцессоры положили начало мини-ЭВМ, а затем и персональным компьютерам, то есть ЭВМ, ориентированным на одного пользователя. Существенным отличием микро-ЭВМ от своих предшественников являются их малые габариты и сравнительная дешевизна. Это первый тип компьютеров, который появился в розничной торговле. Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры. В 1976 г на свет появился первый персональный компьютер серии Аррle-1 под руководством американцев Стива Джобса и Стива Возняка.

Началась эпоха персональных компьютеров (ПК), продолжающаяся и по сей день. Однако четвертое поколение ЭВМ – это не только поколение ПК. Кроме персональных компьютеров, существуют и другие, значительно более мощные компьютерные системы.

В 1989 г. появляется новая разработка компании Intel – микропроцессор Intel-80486 (Intel-80486DX). Этот процессор был полностью совместим с PC семейства Intel-80x86, кроме того, содержал в себе математический сопроцессор и 8 Кбайт кэш-памяти. Этот процессор был более совершенен по сравнению с микропроцессором Intel-80386, его тактовая частота состояла 33 МГц. А в 1992 году – процессор Intel-80486DX2, работавший с удвоенной тактовой частотой – 66 МГц. Впоследствии вышли процессоры с тактовой частотой в 100 МГц.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: