Химические свойства. Карбору́нд — техническое название синтетического материала состава SiC, по составу и свойствам соответствующего минералу муассанит

Реагирует с водой:

Карбору́нд — техническое название синтетического материала состава SiC, по составу и свойствам соответствующего минералу муассанит. Син: карбид кремния. В чистом виде представляет собой бесцветные кристаллы с алмазным блеском, технический продукт — зелёный и чёрный.

Тугоплавок (температура плавления 2830 °C), химически стоек, по твёрдости уступает лишь алмазу и нитриду бора — боразону. Используется как абразивный материал и для изготовления деталей химической и металлургической аппаратуры, работающей в условиях высоких температур. Представляет собой широкозонный полупроводник (Eg=2,2÷3,2 эВ, в зависимости от модификации), использование которого перспективно в силовой и СВЧ-электронике в связи с высокими рабочими температурами, электрической прочностью и хорошей теплопроводностью. Широкая запрещённая зона даёт возможность использовать карбид кремния в качестве материала для высокоэффективных светодиодов (см. глобар), охватывающих весь видимый диапазон спектра. Использование карбида кремния в качестве полупроводника в настоящее время только начинается в связи с трудностью получения его высококачественных монокристаллов.

Кремнефтористоводородная кислота (гексафторокремниевая кислота, гексафторосиликат водорода H2[SiF6]) — сильная неорганическая кислота.

Свойства. Кремнефтористоводородная кислота существует лишь в водном растворе; в свободном виде распадается на тетрафторид кремния SiF4 и фтористый водород HF. Существуют твёрдые белые кристаллогидраты кремнефтористоводородной кислоты составов H2[SiF6]*4H2O [tпл = −53 °C (с разл.)] и H2[SIF6]*2H2O (tпл = +19 °C), которые имеют ионное строение (H5O2+)*2[SiF6] и (H3O+)*2[SiF6].

Устойчив в бесцветном водном растворе (максимальная массовая доля 0,61), перегоняется без разложения в виде 13,3 % раствора. Нейтрализуется щелочами, гидратом аммиака, реагирует с карбонатами щелочных, щелочноземельных металлов и аммония.

Является сильной кислотой, при взаимодействии с оксидами и гидроксидами металлов образует соли — гексафторосилика

Получение. Кремнефтористоводородную кислоту получают прямым синтезом из реагентов:

Её получают также действием сильных кислот на гексафторосиликат натрия, из газов производства простого суперфосфата.

Применение. Применяется как сильное дезинфицирующее средство, но главным образом — для получения солей (кремнефторидов). Она также применяется в качестве компонентов растворов для травления стекла, для электролитов в целях получения гальванических покрытий.

Кислородные соединения кремния. Оксид кремния (IV). Кварц. Кварцевое стекло. Химические свойства оксида кремния (IV). Кремниевые кислоты: мета- и орто-. Поликремниевые кислоты. Силикагель как адсорбент. Состав и получение простого стек-ла.

Оксид кремния SiO2 - твердое, очень тугоплавкое вещество (температура плавления более 1700 °С), широко распространенное в природе, где оно встречается главным образом в виде минерала кварца, а также кристобалита и тридимита.

При обычных температурах устойчивой модификацией является кварц, с ростом температуры наблюдаются полиморфные превращения:

Кремнезем всех модификаций в виде мономера не существует; он всегда полимерен и «построен» из тетраэдров [SiO4], образующих очень прочную атомную решетку.

Каждый атом кремния в кристаллах (SiO2)n тетраэдрически окружен четырьмя атомами кислорода, каждый из которых является мостиковым. Через общий атом кислорода тетраэдры [SiO4] под разными углами связываются друг с другом, образуя непрерывную трехмерную решетку; взаимное расположение тетраэдров [SiO4] в пространстве определяет ту или иную модификацию кремнезема.

В различных модификациях кремнезема прочность связей неодинакова. Это влияет на величину углов Si-О-Si и расстояний Si-О, например угол связи Si-О-Si в различных модификациях кремнезема изменяется от 120 до 180°. Переходы кварц-тридимит-кристобалит сопровождаются разрывом и преобразованием связей, что может происходить только при высоких температурах.

Кварц. Нередко встречается в природе в форме чрезвычайно хорошо образованных кристаллов, иногда значительной величины. Кристаллы образованы из тетраэдров, расположенных винтообразно вокруг центральной оси, в виде спирали. В одном и том же кристалле направление спирали может быть противоположным. Такие кристаллы являются оптическими изомерами. Они вращают плоскость поляризации света, причем могут быть как право-, так и левовращающими. Те и другие кристаллы отличаются как предмет от своего зеркального изображения.

Кварц используется в различных областях науки и техники, и его кристаллы часто выращиваются искусственно. Некоторые разновидности кварца носят особые названия. Прозрачные бесцветные кристаллы называют горным хрусталем. Встречаются и окрашенные разновидности кварца: розовый кварц, фиолетовый (аметист), темно-коричневый (дымчатый топаз), зеленый (хризопраз) и др. Мелкокристаллическая модификация кварца с примесями других веществ называется халцедоном. Разновидностями халцедона являются агат, яшма и др. Горный хрусталь и окрашенные разновидности кварца используют как драгоценные и полудрагоценные камни.

Тридимит встречается в вулканических породах, однако в очень небольших количествах. Известен тридимит и метеоритного происхождения.

Кристобалит в природе иногда встречается в виде мелких кристаллов, включенных в лаву, подобно тридимиту. Тридимит и кристобалит обладают более «рыхлой» структурой, нежели кварц. Так, плотность кристобалита, тридимита и кварца равна 2,32; 2,26 и 2,65 г/см3 соответственно. Расплав кремнезема при медленном охлаждении легко образует аморфное кварцевое стекло. Кремнезем в виде стекла встречается и в природе. Плотность аморфного стекла равна 2,20 г/см3 - ниже, чем у всех кристаллических модификаций. Кварцевое стекло имеет незначительный температурный коэффициент расширения,

поэтому из него готовят лабораторную посуду, устойчивую к резким изменениям температуры.

Все модификации кремнезема в воде практически нерастворимы (при температуре 25 °С растворимость кварца составляет 7, кристобалита - 12, тридимита - 16, кварцевого стекла - 83 мг/л). Поэтому при обычных условиях на них действуют лишь растворы щелочей и плавиковая кислота:

SiO2 + 2КОН = К2SiO3 + Н2О, (1)

SiO2 + 4НF = SiF4↑ + 2Н2О. (2)

Последняя реакция используется при «травлении» стекла.

Приставленый диоксид кремния реагирует с основными оксидами, щелочами (реакция (1)) и карбонатами с образованием силикатов:

SiO2 + СаО = СaSiO3, (3)

SiO2 + Na2СО3 = Nа2SiO3 + СО2. (4)

Реакции (3) и (4) лежат в основе промышленного получения различных стекол, а также цемента. Так, состав обычного стекла (например, оконного, для изготовления посуды) выражается формулой Na2О.СаО.6SiO2. Такое стекло получают сплавлением смеси соды, песка и известняка. Процесс проводят при температуре ~1400 °С до полного удаления газов: Na2СО3 + СаСО3 + 6SiO2 = Nа2О.СаО.6SiO2 + 2СО2↑.

Для получения специальных сортов стекла - огнеупорного, «небьющегося» - при варке добавляют оксиды бария, свинца, бора. Для получения цветных стекол вносят также различные добавки, например добавка оксида кобальта Со2О3 дает синий цвет, оксида хрома Сr2О3 - зеленый, двуоксида марганца МnО2 - розовый.

Оксид SiO2 является ангидридом ряда кремниевых кислот, состав которых можно выразить общей формулой хSiO2∙yН2O, где х и у - целые числа: 1) х = 1, у = 1: SiO2.Н2О, т.е. Н2SiO3 - метакремниевая кислота; 1) х = 1, y = 2: SiO2.2Н2О, т.е. ортокремниевая кислота; 1) x = 2, у = 1: 2SiO2.Н2О, т.е. Н2Si2O5 – двуметакремниевая кислота.

Кислоты, молекулы которых содержат более одной молекулы SiO2, относятся к поликремниевым. Самая простая из кремниевых кислот - Н2SiO3, которую часто называют просто кремниевой, а ее соли - силикатами. Из силикатов в воде растворимы только силикаты натрия и калия, остальные силикаты - тугоплавкие, нерастворимые в воде вещества.Растворы силикатов мутнеют при стоянии на воздухе, так как находящийся в нем СО2 вытесняет кремниевую кислоту из ее солей (Н2SiO3 слабее угольной кислоты; константа диссоциации Н2SiO3 по первой ступени равна К1 = 2,2.10-10).Н2SiO3 практически нерастворима в воде - это свойство используют как качественную реакцию для обнаружения силикат-ионов:

Na2SiO3 + СО2 + Н2О = Nа2СО3 + Н2SiO3↓.

Получают силикаты сплавлением SiO2 со щелочами или карбонатами.

Концентрированные растворы силикатов натрия и калия называют жидким стеклом, они имеют сильнощелочную реакцию вследствии того, что сильно гидролизованы:

К2SiO3 + Н2О = 2КОН + Н2SiO3↓.

Жидкое стекло используют, например, для изготовления клея, водонепроницаемых тканей. Цемент очень широко используется в строительстве как вяжущий материал, который при смешивании с водой затвердевает. Обычно цемент получают в больших вращающихся печах, где производят обжиг и размол различных силикатов (при температуре -1000 °С).

Различают несколько типов цементов, однако условно можно выделить два типа цементов по принципу их «свертывания» - обычный цемент и портландский цемент. Процесс «схватывания» обычного цемента, состоящего из силиката кальция, происходит вследствие образования карбоната кальция за счет углекислого газа воздуха:

СаО.SiO2 + СО2 + Н2О = СаСО3↓ + Н2SiO3↓. При схватывании портландского цемента углекислота не участвует в процессе, а происходит гидролиз силикатов с последующим образованием нерастворимых кристаллогидратов:

Са3SiO5 + Н2О = Са2SiO4 + Са(ОН)2,

Са2SiO4 + 4Н2О = Са2SiO4.4Н2O↓.

Силикаге́ль представляет собой высушенный гель, образующийся из перенасыщенных растворов кремниевых кислот (nSiO2·mH2O) при pH > 5—6. Твёрдый гидрофильный сорбент.

Получение. Получается при подкислении растворов силикатов щелочных металлов с последующей промывкой и высушиванием образовавшегося геля:

Свойства. Силикагель имеет огромную площадь поверхности (800 м²/1 г), состоящую из групп —SiOH, расположенных на расстоянии 0,5 нм друг от друга. Эти группы являются активными центрами, причём активность конкретной партии силикагеля зависит от числа и активности таких центров. В активном адсорбенте, то есть таком, из которого удалена адсорбированная на его поверхности вода, многие центры будут активны. Такая активация происходит при нагревании геля до 150—200 °C.

При нагревании до более высокой температуры в интервале 200—400 °C активность теряется в результате образования связей Si-O, происходящего с отщеплением воды. Эта стадия, однако, обратима. При нагревании выше 400 °C размер поверхности силикагеля необратимо уменьшается. Активные центры взаимодействуют с полярными растворёнными веществами главным образом за счёт образования водородных связей.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: