Зависимость сил взаимодействия между молекулами от расстояния между ними

Область пространства, в которой проявляется действие молекулярных сил, называют сферой молекулярного действия. Радиус этой сферы равен примерно 1•10-9 м.

Силы молекулярного взаимодействия зависят от расстояния между молекулами. При этом характер зависимости от расстояния у сил притяжения и сил отталкивания различен. При увеличении расстояния между молекулами силы отталкивания убывают быстрее, чем силы притяжения, а при уменьшении этого расстояния возрастают быстрее, чем силы притяжения.

Сила отталкивания считается положительной, а сила притяжения отрицательной. Существует такое расстояние между молекулами, на котором сила притяжения равна силе отталкивания, т. е. их результирующая сила равна нулю. Если расстояние между молекулами г>r0, преобладают силы их взаимного притяжения, если же r<r0, преобладают силы отталкивания. Таким образом, результирующая сил молекулярного взаимодействия на больших расстояниях является силой притяжения, а на малых — силой отталкивания. Следовательно, r0— это такое равновесное расстояние между молекулами, на котором они находились бы, если бы тепловое движение молекул не нарушало этого равновесия.

Описанный характер зависимости сил взаимодействия молекул от их расстояния друг от друга объясняет появление силы упругости при деформации тел. Если под действием внешних сил тело сжимается, расстояние между молекулами r становится меньше, чем r0, и появляется сила, препятствующая взаимному сближению молекул. Если же под действием внешних сил тело растягивается, то расстояние г становится больше, чем r0, и появляется сила, препятствующая взаимному удалению молекул. Вблизи точки r0 на графике участок кривой является почти прямолинейным, так как при небольшом смещении молекул из положения равновесия силы притяжения или отталкивания между ними возрастают линейно с увеличением смещения. Именно по этой причине при малых деформациях тела (т. е. в пределах его упругости) выполняется закон Гука.

32. Уравнение состояния газа Ван-дер-Ваальса — уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса. Термическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.

Для одного моля газа Ван-дер-Ваальса оно имеет вид:

где

· — давление,

· — молярный объём,

· — абсолютная температура,

· — универсальная газовая постоянная.

Вывод уравнения[править | править вики-текст]

Наиболее известны два способа получения уравнения: традиционный вывод самого Ван-дер-Ваальса и вывод методами статистической физики.

Традиционный вывод [править | править вики-текст]

Рассмотрим сначала газ, в котором частицы не взаимодействуют друг с другом, такой газ удовлетворяет уравнению состояния идеального газа:

Далее предположим, что частицы данного газа являются упругими сферами одинакового радиуса r. Так как газ находится в сосуде конечного объёма, то пространство, где могут перемещаться частицы, будет несколько меньше. В исходной формуле следует вычесть из всего объёма некую его часть b, которая, вообще говоря, зависит только от вещества, из которого состоит газ. Таким образом, получается следующее уравнение:

Критическое состояние

1) предельное состояние равновесия двухфазных систем, в котором обе сосуществующие фазы (См.Фаза) становятся тождественными по своим свойствам;

2) состояние вещества в точках фазовых переходов (См. Фазовый переход) II рода. К. с., являющеесяпредельным случаем равновесия двухфазных систем, наблюдается в чистых веществах при равновесиижидкость — газ, а в растворах — при фазовых равновесиях (См. Фазовое равновесие) газ — газ, жидкость —жидкость, жидкость — газ, твёрдое тело — твёрдое тело.

33. Кипе́ние — процесс интенсивного парообразования, который происходит в жидкости, как на свободной её поверхности, так и внутри её структуры. При этом в объёме жидкости возникают границы разделения фаз, то есть на стенках сосуда образуются пузырьки, которые содержат воздух и насыщенный пар. Кипение, как и испарение, является одним из способов парообразования. В отличие от испарения, кипение может происходить лишь при определённой температуре и давлении. Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением, называется температурой кипения. Как правило, температура кипения при нормальном атмосферном давлении приводится как одна из основных характеристик химически чистых веществ. Процессы кипения широко применяются в различных областях человеческой деятельности. Например, кипячение является одним из распространённых способов физическойдезинфекции питьевой воды. Кипячение воды представляет собой процесс нагревания её до температуры кипения с целью получениякипятка.

Кипение является фазовым переходом первого рода. Кипение происходит гораздо более интенсивно, чем испарение с поверхности, из-за присутствия очагов парообразования, обусловленных как более высокой температурой достигаемой в процессе кипения, так и наличием примесей[1]. Плавле́ние — это процесс перехода тела из кристаллического твёрдого состояния в жидкое, то есть переход вещества из одного агрегатного состояния в другое. Плавление происходит с поглощением удельной теплоты плавления и является фазовым переходом первого рода, которое сопровождается скачкообразным изменением теплоёмкости в конкретной для каждого вещества температурной точке превращения — температура плавления.

Кристаллиза́ция — процесс фазового перехода вещества из жидкого состояния в твёрдое кристаллическое с образованием кристаллов. Фазой называется однородная часть термодинамической системы отделённая от других частей системы(других фаз) поверхностью раздела, при переходе через которую химический состав, структура и свойства вещества изменяются скачками.

Испаре́ние — процесс фазового перехода вещества из жидкого состояния в парообразное или газообразное, происходящий на поверхности вещества. Процесс испарения является обратным процессу конденсации (переход из парообразного состояния в жидкое). При испарении с поверхности жидкости или твёрдого тела вылетают (отрываются) частицы (молекулы, атомы), при этом их кинетическая энергия должна быть достаточна для совершения работы, необходимой для преодоления сил притяжения со стороны других молекул жидкости.

34. Электри́ческий заря́д — это связанное с телом свойство, позволяющее ему быть источником электрического поля и участвовать в электромагнитных взаимодействиях. Заряд является количественной характеристикой. Единица измерения заряда в СИ — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1А за время 1с. Впервые электрический заряд был введён в законе Кулона в 1785 году. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9×109 H.Свойства электрического заряда

Заряд бывает двух видов, называемых положительным и отрицательным:

заряды одного вида отталкиваются друг от друга, заряды разных видов - притягиваются, причем сила отталкивания равна по модулю силе притягивания;

число положительных и отрицательных зарядов во Вселенной одинаковое.

Полный электрический заряд изолированной системы сохраняется. Закон Кулона и пpинцип супеpпозиции полей. Электpостатика лекции и конспекты по физике

Электрический заряд релятивистски инвариантен, т. е. его величина не зависит от скорости системы отсчета, как бы велика она ни была.

Величина заряда может принимать только дискретные значения:

минимальный заряд частицы e = 1.60·1019 Кл;

любой заряд q кратен минимальному, т. е. q=Ne, где N - целое число;

минимальные положительный и отрицательный заряды равны по абсолютной величине.

Зако́н Куло́на — это закон, описывающий силы взаимодействия между неподвижными точечными электрическими зарядами. Сила взаимодействия двух точечных зарядов в вакууме направлена вдоль прямой, соединяющей эти заряды, пропорциональна их величинам и обратно пропорциональна квадрату расстояния между ними. Она является силой притяжения, если знаки зарядов разные, и силой отталкивания, если эти знаки одинаковы. В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где — сила, с которой заряд 1 действует на заряд 2; — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — ); — коэффициент пропорциональности.

Электрическое поле — одна из двух компонент электромагнитного поля, представляющее собой векторное поле[1], существующее вокруг телили частиц, обладающих электрическим зарядом, а также возникающее при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может быть обнаружено благодаря его силовому воздействию на заряженные тела[2]. Электрическое поле обладает энергией. Плотность этой энергии определяется величиной поля и может быть найдена по формуле

где E — напряжённость электрического поля, D — индукция электрического поля.

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный точечный заряд, помещенный в данную точку поля, к величине этого заряда :

.

35. Напряженностью электрического поля называется сила, действующая со стороны электромагнитного поля на пробный заряд q, покоящийся в точке (x,y,z), отнесенная к величине этого заряда:

. (1.2.1)

Формула (1.2.1) дает определение напряженности электростатического поля, если известно, что заряды – источники поля также покоятся. Зная Е как функцию координат нетрудно найти силу, действующую в данном поле на данный заряд в любой точке:

. (1.2.2)

Из закона Кулона (1.1.5) и определения (1.2.1) следует, что напряженность электростатического поля, созданного точечным зарядом Q на расстоянии r от него равна

. (1.2.3)

Поскольку электростатическое поле создается, в конечном счете, точечными зарядами (любое заряженное тело можно рассматривать как систему микроскопических заряженных частиц), то сила, действующая на пробный заряд со стороны произвольного электростатического поля, есть сумма сил, действующих на пробный заряд со стороны каждого точечного источника. Отсюда следует принцип суперпозиции, который посредством формулы (1.2.3) можно выразить формулой для суммы полей точечных зарядов в точке, удаленной на расстояния от них:

. (1.2.4)

Плотность заряда в классической физике[править | править вики-текст]

Линейная, поверхностная и объемная плотности заряда, обозначаются обычно функциями , и , соответственно, где — это радиус-вектор. Зная эти функции мы можем определить полный заряд:

Объёмные плотности зарядов без учета свойств полевой среды определяются по простейшим уравнениям, приведенным с учетом символики, показанной в Таблице величин физического поля:

ρf = d Qf /d Vf (1) и ρ с = d Q с /d Vc, (2)

в которых индекс " f " относится к величинам потенциального поля, а индекс " c " − к величинам вихревого поля. Поверхностная плотность заряда — есть отношение заряда к площади заряженной поверхности. Линейная плотность однородного тела — физическая величина, определяемая отношением массы тела к его линейному параметру (как правило, длине).

Единицей измерения является килограмм на метр(кг/м).

36. Поток векторного поля через поверхность — поверхностный интеграл второго рода по поверхности . По определению

где — векторное поле (вектор-функция векторного аргумента — точки пространства), — единичный вектор положительной нормали к поверхности (положительное направление выбирается для ориентируемой поверхности условно, но одинаково для всех точек — то есть для дифференцируемой поверхности — так, чтобы было непрерывно; для неориентируемой поверхности это не важно, так как поток через неё всегда ноль), — элемент поверхности.

· В трёхмерном случае , а поверхностью является обычная двумерная поверхность.

Иногда, особенно в физике, применяется обозначение

тогда поток записывается в виде

.

Теорема Гаусса (закон Гаусса) — один из основных законов электродинамики, входит в систему уравнений Максвелла. Выражает связь (а именно равенство с точностью до постоянного коэффициента) между потоком напряжённости электрического поля сквозь замкнутую поверхность и зарядом в объёме, ограниченном этой поверхностью. Применяется отдельно для вычисления электростатических полей. Расчет напряжённости поля сферически симметричного распределения заряда [править | править вики-текст]

Способ расчета с помощью теоремы Гаусса для любого сферически симметричного распределения заряда в целом сводится к тому, что описано выше для случая точечного заряда (см. параграф о законе Кулона).

Отметим тут только в отношении неточечных источников обладающих сферической симметрией вот что (всё это является следствиями применения описанного там метода):

1. Сферически симметричный заряд с концентрической сферической пустотой (или незаряженной областью) в середине, не создает внутри этой пустоты поля (напряжённость поля там равна нулю).

2. Вообще поле на расстоянии r от центра создается только теми зарядами, которые находятся глубже к центру. Это поле можно рассчитать по закону Кулона: , только под Q здесь следует понимать суммарный заряд шаровой области радиусом r (а это означает, что зависимость от r в итоге отличается от кулоновской, поскольку с ростом r растет Q, по крайней мере пока r не больше радиуса всей заряженной области — если только она в свою очередь конечна).

3. При r, больших радиуса заряженной области (если он конечен), выполняется самый обычный закон Кулона (как для точечного заряда). Это объясняет, например, почему обычный закон Кулона работает для равномерно заряженных шаров, сфер, планет со структурой близкой к сферически симметричной даже вблизи их поверхности (например, почему вблизи поверхности Земли гравитационное поле достаточно близко к полю точечной массы, сосредоточенной в центре Земли).

4. В интересном частном случае равномерно заряженного шара, его электрическое (или гравитационное) поле оказывается внутри шара пропорциональным расстоянию до центра.[18]

37. Диверге́нция (от лат. divergere — обнаруживать расхождение) — дифференциальный оператор, отображающий векторное поле на скалярное (то есть, в результате применения к векторному полю операции дифференцирования получается скалярное поле), который определяет (для каждой точки), «насколько расходится входящее и исходящее из малой окрестности данной точки поле», точнее, насколько расходятся входящий и исходящий потоки. Определение дивергенции выглядит так:

где Ф F — поток векторного поля F через сферическую поверхность площадью S, ограничивающую объём V.

Циркуля́цией ве́кторного по́ля по данному замкнутому контуру Γ называется криволинейный интеграл второго рода, взятый по Γ. По определению

где — векторное поле (или вектор-функция), определенное в некоторой области D, содержащей в себе контур Γ, — бесконечно малое приращение радиус-вектора вдоль контура. Окружность на символе интеграла подчёркивает тот факт, что интегрирование производится по замкнутому контуру. Приведенное выше определение справедливо для трёхмерного случая, но оно, как и основные свойства, перечисленные ниже, прямо обобщается на произвольную размерность пространства.

Ро́тор, или вихрь — векторный дифференциальный оператор над векторным полем. Ротор векторного поля — есть вектор, проекция которого на каждое направление n есть предел отношения циркуляции векторного поля по контуру L, являющемуся краем плоской площадки Δ S, перпендикулярной этому направлению, к величине этой площадки, когда размеры площадки стремятся к нулю, а сама площадка стягивается в точку:

.

Теорема Стокса — одна из основных теорем дифференциальной геометрии и математического анализа об интегрировании дифференциальных форм, которая обобщает несколько теорем анализа. Общая формулировка

Пусть на ориентируемом многообразии размерности заданы ориентируемое -мерное подмногообразие и дифференциальная форма степени класса (). Тогда, если граница подмногообразия положительно ориентирована, то

где обозначает внешний дифференциал формы .

Теорема распространяется на линейные комбинации подмногообразий одной размерности, так называемые цепи. В этом случае формула Стокса реализует двойственность между когомологией де Рама и гомологией циклов многообразия .

Необходимым условием потенциальности векторного поля в трёхмерном пространстве является равенство нулю ротора поля. Однако это условие не является достаточным (например, в многосвязной области у безвихревого поля может не существовать скалярный потенциал).

Фо́рмула Острогра́дского — математическая формула, которая выражает поток векторного поля через замкнутую поверхность интегралом от дивергенции этого поля по объёму, ограниченному этой поверхностью:

то есть интеграл от дивергенции векторного поля , распространённый по некоторому объёму , равен потоку вектора через поверхность , ограничивающую данный объём.

Формула применяется для преобразования объёмного интеграла в интеграл по замкнутой поверхности.

В работе Остроградского формула записана в следующем виде:

где и — дифференциалы объёма и поверхности соответственно. В современной записи — элемент объёма, — элемент поверхности. — функции, непрерывные вместе со своими частными производными первого порядка в замкнутой области пространства, ограниченного замкнутой гладкой поверхностью.

С помощью интегральной теоремы Гаусса нельзя определить, как связан исток линий в данной точке поля с плотностью свободных зарядов в той же точке поля. Поэтому переходят к записи теоремы Гаусса в дифференциальной форме:

(15.16)

38. В теории дифференциальных уравнений, начальные и граничные условия — дополнение к основному дифференциальному уравнению (обыкновенному или в частных производных), задающее его поведение в начальный момент времени или на границе рассматриваемой области соответственно. Граничные условия для касательных составляющих векторов D и E следуют из соотношения, описывающего циркуляцию вектора напряженности электрического поля. Граничные условия для векторов электростатического поля

На поверхности раздела сред, где или P r изменяются скачком, справедливы следующие соотношения

На поверхности проводящего тела

Тангенциальная составляющая вектора напряженности электрического поля непрерывна на любой поверхности раздела сред.

Скачок нормальной составляющей вектора электрического смещения равен поверхностной плотности электрических зарядов.

· 39. Электромагнитный потенциал — четырёхмерная величина (4-вектор), характеризующая электромагнитное поле. Играет фундаментальную роль как в классической, так и в квантовой электродинамике.

Электромагнитный потенциал можно представить состоящим из потенциалов электромагнитного поля φ и A, рассматриваемых в традиционной трехмерной формулировке электродинамики как отдельные величины, определяющие вместе электромагнитное поле

Электростатический потенциа́л (см. также кулоновский потенциал) — скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию, которой обладает единичный положительный пробный заряд, помещённый в данную точку поля.Единицей измерения потенциала в Международной системе единиц (СИ) является вольт (русское обозначение: В; международное: V), 1 В = 1 Дж/Кл (подробнее о единицах измерения — см. ниже).

Электростатический потенциал — специальный термин для возможной замены общего термина электродинамики скалярный потенциал в частном случае электростатики (исторически электростатический потенциал появился первым, а скалярный потенциал электродинамики — его обобщение). Употребление термина электростатический потенциал определяет собой наличие именно электростатического контекста. Если такой контекст уже очевиден, часто говорят просто о потенциале без уточняющих прилагательных.

Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:

Напряжённость электростатического поля и потенциал связаны соотношением[1]

или обратно[2]:

Здесь оператор набла, то есть в правой части равенства стоит минус градиент потенциала — вектор с компонентами, равными частным производным от потенциала по соответствующим (прямоугольным) декартовым координатам, взятый с противоположным знаком.

Воспользовавшись этим соотношением и теоремой Гаусса для напряжённости поля , легко увидеть, что электростатический потенциал удовлетворяет уравнению Пуассона в вакууме. В единицах системы СИ:

где — электростатический потенциал (в вольтах), — объёмная плотность заряда (в кулонах на кубический метр), а — электрическая постоянная (в фарадах на метр).

40. Эквипотенциальные поверхности — понятие, применимое к любому потенциальному векторному полю, например, к статическомуэлектрическому полю или к ньютоновскому гравитационному полю. Эквипотенциальная поверхность — это поверхность, на которойскалярный потенциал данного потенциального поля принимает постоянное значение (поверхность уровня потенциала). Определение потенциала по заданному распределению зарядов

Поле единичного заряда легко найти, применив теорему Гаусса: поместим заряд в центр мысленной сферы радиусом и вычислим выходящий из неё поток индукции:

. (10.29)

Применяя закон Гаусса, получаем

(10.30)

и для напряженности соответственно:

. (10.31)

Принимая равным нулю потенциал бесконечно удаленных точек, получаем

. (10.32)

Выражение для потенциала точечного заряда дает возможность найти для однородной среды общий метод вычисления потенциала при заданном распределении электрических зарядов в конечной области пространства.

Разбив все распределенные в пространстве заряды на элементарные части dq, будем рассматривать эти элементы как точечные заряды (рис. 10.4).

Потенциал в точке А, определяемый каждым таким элементом:

. (10.33)

Потенциал, определяемый совокупностью всех зарядов:

   

. (10.34)

Если электрический заряд распределен по объёму , а объёмная плотность заряда в некоторой точке , то следует разбить весь объём на элементы . Тогда

. (10.35)

Если заряд распределен в тонких поверхностных слоях, то можно считать, что заряд распределен по поверхности тела:

, (10.36)

где rпов – поверхностная плотность заряда.

Если заряд распределен по проводнику, то

, (10.37)

где t – линейная плотность заряда.

И, наконец, при известном числе зарядов

. (10.38)

41. Электростатическая индукция — явление наведения собственного электростатического поля, при действии на тело внешнего электрического поля. Явление обусловлено перераспределением зарядов внутри проводящих тел, а также поляризацией внутренних микроструктур[1] у непроводящих тел. Внешнее электрическое поле может значительно исказиться вблизи тела с индуцированным электрическим полем. Электростатическая индукция в проводниках

Перераспределение зарядов в хорошо проводящих металлах при действии внешнего электрического поля происходит до тех пор, пока заряды внутри тела практически полностью не скомпенсируют внешнее электрическое поле. При этом на противоположных сторонах[2] проводящего тела появятся противоположные наведённые (индуцированные) заряды. Уравне́ние Пуассо́на — эллиптическое дифференциальное уравнение в частных производных, которое описывает

· электростатическое поле,

· стационарное поле температуры,

· поле давления,

· поле потенциала скорости в гидродинамике.

Оно названо в честь знаменитого французского физика и математика Симеона Дени Пуассона.

Это уравнение имеет вид:

где — оператор Лапласа или лапласиан, а — вещественная или комплексная функция на некотором многообразии.

В трёхмерной декартовой системе координат уравнение принимает форму:

В декартовой системе координат оператор Лапласа записывается в форме и уравнение Пуассона принимает вид:

Если f стремится к нулю, то уравнение Пуассона превращается в уравнение Лапласа (уравнение Лапласа — частный случай уравнения Пуассона):

Уравнение Пуассона может быть решено с использованием функции Грина; см., например, статью экранированное уравнение Пуассона. Есть различные методы для получения численных решений. Например, используется итерационный алгоритм — «релаксационный метод».

Уравнение Лапласа — дифференциальное уравнение в частных производных. В трёхмерном пространстве уравнение Лапласа записывается так:

и является частным случаем уравнения Гельмгольца.

Уравнение рассматривают также в двумерном и одномерном пространстве. В двумерном пространстве уравнение Лапласа записывается:

Также и в n -мерном пространстве. В этом случае нулю приравнивается сумма n вторых производных.

С помощью дифференциального оператора

— (оператора Лапласа) — это уравнение записывается (для любой размерности) одинаково как

В этом случае размерность пространства указывается явно (или подразумевается).

Уравнение Лапласа относится к эллиптическому виду. Функции, являющиеся решениями уравнения Лапласа, называются гармоническими функциями. Неоднородное уравнениеЛапласа называется уравнением Пуассона.

· Замечание: всё сказанное выше относится к декартовым координатам в плоском пространстве (какова бы ни была его размерность). При использовании других координат представление оператора Лапласа меняется, и, соответственно, меняется запись уравнения Лапласа (пример — см. ниже). Эти уравнения также называются уравнением Лапласа, однако для устранения неоднозначности терминологии при этом обычно явно добавляется указание системы координат (и, при желании полной ясности, размерности), например: "двумерное уравнение Лапласа в полярных координатах".

42. Электри́ческая ёмкость — характеристика проводника, мера его способности накапливать электрический заряд. В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками[1].

В Международной системе единиц (СИ) ёмкость измеряется в фарадах, в системе СГС — в сантиметрах.

Диэлектри́ческая проница́емость среды — физическая величина, характеризующая свойства изолирующей (диэлектрической) среды и показывающая зависимостьэлектрической индукции от напряжённости электрического поля.

Определяется эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды).

Различают относительную и абсолютную диэлектрические проницаемости.

Относительная диэлектрическая проницаемость ε является безразмерной и показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем ввакууме. Эта величина для воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постоянная воды в статическом поле достаточно высока — около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим дипольным моментом. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.

Абсолютная диэлектрическая проницаемость в зарубежной литературе обозначается буквой ε, в отечественной преимущественно используется сочетание , где —электрическая постоянная. Абсолютная диэлектрическая проницаемость используется только в Международной системе единиц (СИ), в которой индукция и напряжённость электрического поля измеряются в различных единицах. В системе СГС необходимость в введении абсолютной диэлектрической проницаемости отсутствует. В Международной системе величин абсолютная диэлектрическая постоянная (как и электрическая постоянная) имеет размерность L−3M−1T4I². В Международной системе единиц (СИ), основанной на Международной системе величин, единицей абсолютной диэлектрической постоянной является фарад на метр: [ ]=Ф/м.

Конденса́тор (в теплотехнике) (лат. condenso — уплотняю, сгущаю) — теплообменный аппарат, теплообменник,

в котором осуществляется процесс конденсации, процесс фазового перехода теплоносителя из парообразного состояния в жидкое за счёт отвода тепла более холодным теплоносителем. В конденсатор обычно поступают перегретые пары теплоносителя, которые охлаждаются до температуры насыщения и, конденсируясь, переходят в жидкую фазу. Для конденсации пара необходимо отвести от каждой единицы его массы теплоту, равную удельной теплоте конденсации. В зависимости от охлаждающей среды (теплоносителя) конденсаторы могут быть разделены на следующие типы: с водяным охлаждением, с водо-воздушным (испарительным) охлаждением, с воздушным охлаждением, с охлаждением кипящим холодильным агентом в конденсаторе-испарителе, с охлаждением технологическим продуктом. Выбор типа конденсатора зависит от условий применения. Конденсаторы применяются на тепловых и атомных электростанциях для конденсации отработавшего в турбинах пара. При этом на каждую тонну конденсирующегося пара приходится около 50 тонн охлаждающей воды. Поэтому потребность ТЭС и особенно АЭС в воде очень велика — до 600 тысяч м³/час. В маловодных районах охлаждение конденсаторов турбин может производиться воздухом (примером могут служить воздушно-конденсационные установки на Разданской ГРЭС, Армения), однако это ухудшает КПДтурбин, вследствие повышения температуры конденсации. В турбинах с противодавлением конденсатор отсутствует — в этом случае весь отработанный пар поступает на производственные нужды. Эне́ргия электромагни́тного по́ля — энергия, заключенная в электромагнитном поле. Сюда же относятся частные случаи чистого электрического и чистогомагнитного поля. Понятие работы электрического поля по перемещению заряда вводится в полном соответствии с определением механической работы:

где — разность потенциалов (также употребляется термин напряжение).

Во многих задачах рассматривается непрерывный перенос заряда в течение некоторого времени между точками с заданной разностью потенциалов , в таком случае формулу для работы следует переписать следующим образом:

где — сила тока.

43. Поляризация диэлектриков — явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей, обычно под воздействием внешнего электрического поля, иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации. Физический смысл вектора электрической поляризации — это дипольный момент, отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

· Вектор поляризации применим для описания макроскопического состояния поляризации не только обычных диэлектриков, но и сегнетоэлектриков, и, в принципе, любых сред, обладающих сходными свойствами. Он применим не только для описания индуцированной поляризации, но и спонтанной поляризации (у сегнетоэлектриков).

Поляризация — состояние диэлектрика, которое характеризуется наличием электрического дипольного момента у любого (или почти любого) элемента его объема.

Различают поляризацию, наведенную в диэлектрике под действием внешнего электрического поля, и спонтанную (самопроизвольную) поляризацию, которая возникает всегнетоэлектриках в отсутствие внешнего поля. В некоторых случаях поляризация диэлектрика (сегнетоэлектрика) происходит под действием механических напряжений, сил трения или вследствие изменения температуры.

Поляризация не изменяет суммарного заряда в любом макроскопическом объеме внутри однородного диэлектрика. Однако она сопровождается появлением на его поверхности связанных электрических зарядов с некоторой поверхностной плотностью σ. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле c напряжённостью , направленное против внешнего поля с напряжённостью . В результате напряжённость поля внутри диэлектрика будет выражаться равенством:

Электри́ческий ди́польный моме́нт — векторная физическая величина, характеризующая, наряду с суммарным зарядом (и реже используемыми высшими мультипольными моментами), электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на нее внешних полей. Главная после суммарного заряда и положения системы в целом (ее радиус-вектора) характеристика конфигурации зарядов системы при наблюдении ее издали. Чтобы произвести количественное описание поляризации диэлектрика вводят векторную величину — поляризованность, которая определяется как дипольный момент единицы объема диэлектрика:

(1)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: