Магнитное поле прямолинейного магнита

До этого мы рассматривали магнит, обладающий магнетизмом одного наименования. Однако любой реальный магнит биполярен, то есть обладает двумя полюсами, в которых сосредоточено равное количество магнетизма двух разных наименований.

Найдем напряженность магнитного поля прямолинейного магнита в виде продолговатого бруска (такая форма принята в компасном деле)

Рассмотрим напряженность магнитного поля в двух точках: находящейся на оси магнита и находящейся на линии перпендикулярной этой оси и проходящей через центр магнита. Магнитные заряды будем считать сосредоточенными в двух крайних точках на концах магнита


Этот схематический магнит имеет длину 2l, на его концах сосредоточены равные магнитные заряды двух наименований: +m, -m. Найдем напряженность магнитного поля H1 в точке p1 находящейся на продолжении оси магнита на расстоянии r от его середины.

Рассмотрим действие ближайшего к точке p1 полюса магнита с магнитным зарядом +m. В соответствии с выражением (2) это действие в указанной точке выразится напряженностью . Действие же другого полюса в соответствии с тем же законом будет равно .

Совместное действие полюсов выразится в виде алгебраической суммы этих двух выражений – напряженностей магнитных полей обоих полюсов магнита:

(7)

Алгебраическое суммирование производят потому, что оба полюса и точка, в которой ищут значение поля, лежат на одной прямой, то есть векторы обоих напряженностей составляют одну прямую линию.

Формулой (7) исчерпывается принципиальная сторона вывода. Упростим эту формулу, приведя ее правую часть к общему знаменателю:

вынесем r2 за скобки и, произведя сокращение

обозначив 2ml=M, получим выражение напряженности магнитного поля схематического магнита в точке, находящейся на продолжении его оси на расстоянии r от центра:

(8)

Буквой M обозначено произведение магнитного заряда m, сосредоточенного на конце магнита, на длину этого магнита 2l. M – по аналогии с механикой –магнитный момент магнита.

Уравнение (8) в применении к схематическому магниту дает точное выражение напряженности. Однако эту формулу можно заменить более удобной для расчетных целей.

Если рассмотреть поле на расстоянии r, значительно большем полудлины магнита l, то дробь можно разложить в биноминальный ряд:


и ограничиться первыми членами разложения

После разложения формула (8) примет такой вид:

(9)

где:

Иногда величина бывает настолько мала, что ей можно пренебречь, поэтому

(10)

Решение второй задачи: найдем напряженность H2 магнитного поля магнита в точке p2 находящейся на перпендикуляре к оси магнита, восстановленном из его центра. Расстояние от центра магнита до точки p2 примем равным r.

Отрезок является геометрической суммой двух других отрезков , каждый из которых выражает собой напряженность магнитного поля в точке p2 вызванного магнитными зарядами (-m) и (+m), сосредоточенными в полюсах магнита. Эти напряженности по абсолютному значению равны между собой и каждая из них равняется , где R – расстояние от точки p2 до полюсов магнита.

Из подобных треугольников можно найти отсюда

Произведя в этой формуле замену R на и 2ml на M, получим выражение напряженности магнитного поля в точке p2 , находящейся на перпендикуляре к оси магнита, восстановленном из его середины

(11)

Формула (11) – точная формула, упростим ее, разложив второй сомножитель в биноминальный ряд

поэтому формула (11) окончательно примет вид:

(12)

где:

Если принять величину бесконечно малой, то

(13)

Выводы

1. Напряженность магнитного поля изменяется обратно пропорционально кубу расстояния. Так, если расстояние до магнита уменьшить вдвое, то напряженность магнитного поля возрастет в 8 раз.

2. Если ось элементарного магнита совместить с направлением на данную точку, а затем повернуть магнит на угол 90° к его первоначальному направлению, оставляя расстояние r неизменным, то напряженность магнитного поля уменьшится вдвое.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: