Программное обеспечение станций операторов/диспетчеров

SCADA-пакеты позволяют без применения высокоуровневых языков программирования (или с минимальным их применением) создавать программное обеспечение персональных компьютеров (рабочих станций, пультов операторов/диспетчеров), предоставляющее оператору широкий набор функций для мониторинга и управления процессом.

На первом этапе (80-е годы) каждый производитель микропроцессорных систем управления разрабатывал свою собственную SCADA-программу. Такие программы могли взаимодействовать только с узким кругом контроллеров, и по всем параметрам были закрытыми (отсутствие набора драйверов для работы с устройствами различных производителей и средств их создания, отсутствие стандартных механизмов взаимодействия с другими программными продуктами и т. д.).

В 90-е годы сначала зарубежные, а затем и отечественные фирмы начали разрабатывать открытые SCADA-программы, которые уже можно было использовать для широкого класса микропроцессорных контроллеров.

Универсальные SCADA-программы ведущих фирм, разрабатывающих исключительно программный продукт для систем автоматизации, стали настолько высокоуровневыми, что выдерживать конкуренцию с ними производителям всего комплекса программно-аппаратных средств было уже не под силу. Это привело к тому, что число фирм, разрабатывающих для своих контроллеров оригинальные SCADA-программы, стало уменьшается. Но количество фирм, специализирующихся на выпуске открытых SCADA-программ, продолжает расти.

Спектр функциональных возможностей определен самой ролью SCADA в системах управления (HMI - Humain Machine Interface/человеко-машинный интерфейс-ЧМИ) и реализован практически во всех пакетах. Это:

- автоматизированное проектирование системы, дающее возможность

создания ПО системы автоматизации без реального программирования

(Development);

- исполнение прикладных программ (Run Time);

- сбор первичной информации от устройств нижнего уровня;

- обработка первичной информации;

- регистрация алармов и исторических данных;

- представление текущих и накопленных (архивных) данных в виде

графиков (тренды);

- отображение параметров технологического процесса и состояния оборудования с помощью мнемосхем, таблиц, графиков и т.п.;

- поддержка стандартных технологий и протоколов обмена данными;

- дистанционное управление объектами;

- формирование отчетов по созданным на этапе проектирования шаблонам.

Базовый функциональный профиль систем SCADA/HMI сформировался еще во времена первых управляющих вычислительных машин. Со временем функциональные возможности SCADA/HMI расширялись (появление цветных дисплеев, средств анимации, голосовой сигнализации и т. п.).

С появлением концепции открытых систем программное обеспечение SCADA/HMI для операторских станций становится самостоятельным продуктом, свободно взаимодействующим с программно-аппаратными средствами разных производителей.

8. Состав полевого оборудования в АСУ ТП. Передаточные функции и принципы работы первичных преобразователей давления, расхода, уровня, температуры.

Нижний (полевой) уровень АСУ ТП обеспечивает сбор данных о параметрах технологического процесса и состояния оборудования, реализует управляющие воздействия. Основными техническими средствами нижнего уровня являются датчики и исполнительные устройства, станции распределенного ввода/вывода, пускатели, концевые выключатели, преобразователи частоты.

Передаточная функция. В теории управления часто используют символическую операторную форму записи дифференциальных уравнений. При этом вводится понятие алгебраизированного оператора дифференцирования p = d/dt так, что, dy/dt = py, а pn = dn /dtn. Это лишь другое сокращенное обозначение операции дифференцирования. Соответственно, операция интегрирования записывается как 1/p. В операторной форме исходное дифференциальное уравнение записывается как алгебраическое:

a0p(n)y+a1p(n-1)y+...+any = (a0p(n)+a1p(n-1)+...+ an)y = (b0p(m)+...+bm-1p+bm)u.

Не надо путать эту форму записи с операционным исчислением. Здесь используются непосредственно функции y(t), u(t) (оригиналы), а не их изображения Y(p), U(p), получаемые из оригиналов преобразованием Лапласа. При нулевых начальных условиях с точностью до обозначений записи действительно похожи, и некоторые правила операционного исчисления применимы к операторной форме записи уравнений динамики. Так, оператор р можно выносить за скобки и можно рассматривать в качестве сомножителя, но без права перестановки: py ≠ yp. Условно можно считать оператор р алгебраической величиной.

Уравнение динамики в операторной форме:

Дифференциальный оператор W(p) называют передаточной функцией. Она определяет зависимость отношения выходной величины звена к входной во времени: W(p) = y(t)/u(t), т.е. динамический коэффициент усиления. Передаточные функции в операторной форме также представляют собой сокращенную символическую запись дифференциальных уравнений. В установившемся режиме d/dt = 0, p = 0, и передаточная функция превращается в коэффициент передачи звена K = bm /an.

Знаменатель передаточной функции D(p) = a0pn+a1pn-1+a2pn -2+...+an называют характеристическим полиномом. Его корни, при которых знаменатель D(p) обращается в ноль, а W(p) стремится к бесконечности, называются полюсами передаточной функцией.

Числитель K(p) = b0pm+b1pm-1+...+bm называют операторным коэффициентом передачи. Его корни, при K(p) = 0 и W(p) = 0, называются нулями передаточной функции.

Звено системы с известной передаточной функцией называют динамическим звеном. Под динамическим звеном понимают устройство любого физического вида и конструктивного оформления, описываемое определенным дифференциальным уравнением. На схемах динамическое звено изображают прямоугольником, внутри которого записывается выражение передаточной функции. Для звена с двумя входами и одним выходом (рис. 2.4.3) должны быть записаны передаточные функции по каждому из входов. Передаточная функция является основной характеристикой звена, из которой можно получить все остальные характеристики. Она определяется только параметрами системы и не зависит от входных и выходных величин. Например, одним из динамических звеньев является интегратор. Его передаточная функция Wи(p) = 1/p. Схема системы, составленная из динамических звеньев, называется структурной.

Передаточная функция — один из способов математического описания динамической системы. Используется в основном в теории управления, связи, цифровой обработке сигналов. Представляет собой дифференциальный оператор, выражающий связь между входом и выходом линейной стационарной системы. Зная входной сигнал системы и передаточную функцию, можно восстановить выходной сигнал.

В теории управления передаточная функция непрерывной системы представляет собой отношение преобразования Лапласа выходного сигнала к преобразованию Лапласа входного сигнала при нулевых начальных условиях.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: