Химическое выветривание

Это сложные процессы химического разложения горных пород, включающие значительную группу химических реакций, биогенных и биохимических процессов.

Основные факторы данного типа выветривания – вода, углекислота, сильные (серная, азотная), органические кислоты, кислород, сероводород, метан, аммиак, биологическая деятельность. Ведущими процессами являются растворение, выщелачивание, окисление, гидратация, вторичная карбонатизация, гидролиз и пр. происходит вынос из зоны выветривания катионов металлов, щелочей и др. элементов, оксидов, гидроксидов в форме истинных и коллоидных растворов, в виде взвесей тончайших частиц.

Биогенный фактор – важнейший агент влияние на совокупность процессов выветривания, протекающих в обстановке взаимодействия атмосферных, гидросферных и литосферных составляющих. Биомасса оказывает каталитическое воздействие, влияет на явления деградации и синтеза как источник энергии и вещества, создает благоприятную среду для деятельности бактериального микробиоса.

Большую роль при процессах химических разложения играет структура воды, определяющая ее свойства как слабого электролита, диссоциирующего на ионы Н+ и ОН-. Установлено, что при температуре 20°С ионное произведение воды таково: КВ = [H+] [OH-] = 1·10-14, где КВ – ионное произведение воды в г/ион на литрах. Степень диссоциации воды возрастает с увеличением температуры, что способствует активизации процессов разложения пород. Поскольку вода является электролитом, она растворяет почти все известные минералы.

Существенное значение при процессах химического выветривания играет величина кислотности-щелочности pH, которая показывает концентрацию водородных ионов. Величина pH – обратная логарифму концентрации водородных ионов, меняется в пределах 1-14 и фиксирует реакцию среды: от кислой, pH = 1-6, через нейтральную pH = 7 до щелочной pH = 8-14. Минимальные значения pH характерны для сильнокислых сред, максимальные – для высокощелочных.

От величины pH существенно зависит растворимость таких компонентов как SiO2, Al2O3, Fe(OH)3, Al(OH)3 и др., образующихся, в частности, при химическом выветривании. Гидрат окиси железа растворим, а следовательно может переноситься водными растворами только в кислой среде при pH = 1-4. Нейтрализация растворов вызывает его осаждение. Гидрат окиси алюминия Al(OH)3 растворим как в кислой, так ив щелочной среде, выпадая в осадок при pH = 6-8. Кремнезем SiO2 растворим в резко щелочной среде, будучи малоподвижным в интервале pH от 3 до 8.

Растворимость определяет возможность переноса многих компонентов и условия их осаждения.

Для реакций, происходящих при выветривании и определяющих вынос соединений с места разложения, важен такой показатель как ионный потенциал и его связь с растворимостью. Ионный потенциал определяется отношением заряда катиона к его ионному радиусу. В соответствии с этим все ионы (по В. М. Гольдшмиту) делятся на 3 группы:

· растворимые – Na+, Ca2+, Mg2+. Их ионный потенциал равен трем. Не подвергаются гидратации, но диполи воды притягиваются к поверхности этих катионов, образуя сольватные слои. В эту группу также входят катионы калия и цезия;

· катионы-гидролизаты – трехвалентные алюминий и железо, четырехвалентный марганец. Их ионный потенциал больше 3-х. гидратируются по схеме Al3+ + 3H2O = Al(OH)3 + 3H+;

· оксианионы [CO3]2-, [PO4]3- и др., имеющие ионный потенциал 9,5 и более, и возникающие путем диссоциации в воде оснований. Мигрируют обычно в форме гидрокарбонат-иона [HCO3]- и гидрофосфат иона [H2PO4].

Кроме показателя кислотности-щелочности важным параметром физико-химических условий среды растворения и миграции является окислительно-восстановительный потенциал Eh. Считается, что равный нулю окислительно-восстановительный потенциал (ОКВ) соответствует реакции диссоциации водорода: Н2 = 2Н+ + 2е. значение ОКВ, при котором существует двухвалентное железо, соответствует 0,44 в. Для двухвалентной меди 0,35 в. поэтому реакция сернокислой меди с самородным железом сопровождается образованием самородной меди с одновременным превращением атома железа в катион: CuSO4 + Fe = FeSO4 +Cu.

Особую роль в процессах химического играют продукты разрушения органического вещества, прежде всего растительных остатков. В результате образуются гуминовые кислоты. Они создают кислую реакцию среды и участвуют в химическом разложении силикатов. С катионами ряда металлов гуминовые кислоты образуют комплексные анионы – гуматы, что способствует выносу этих элементов из продуктов выветривания в форме коллоидных растворов. Кроме того, присутствие органического вещества создает восстановительную среду, а растворимость многих закисных соединений выше, чем окисных. Микроорганизмы определяют также протекание таких реакций как сульфат-редукция, продуцируют водород, переводят окисное железо в нерастворимое состояние и др.

Большое значение для химического выветривания и выноса его продуктов с места разложения материнских пород принадлежит углекислоте, образующей с некоторыми металлами хорошо растворимые комплексы. Карбонаты металлов при взаимодействии с CO2 превращаются в бикарбонаты, что значительно повышает их растворимость.

Комплекс горных пород, возникших в верхней части земной коры под влиянием различных факторов выветривания, называется корой выветривания. Кора выветривания (КВ) формируется в основном в зоне аэрации и просачивания. По характеру и степени изменения исходных горных пород выделяется несколько геохимических типов кор выветривания, рассмотренных ниже.

Латеритное выветривание сопровождается образованием простых окислов при полном гидролизе силикатов. Такой тип выветривания характерен для влажного климата (тропики, субтропики) при глубоко зашедшем химическом разложении исходной породы. Профиль латеритной коры выветривания по гранитам (описание снизу вверх) включает такие зоны:

· невыветрелый гранит;

· измененный гранит, мощность 3 м;

· горизонт структурных глин, мощность 3 м;

· горизонт плотных, часто шлаковидных масс кирпично-красного темно-бурого до почти черного цвета. Это продукт полного гидролиза силикатов и выноса всех подвижных катионов, обогащения окислами и гидроокислами железа, алюминия. Эта зона является типоморфной для коры данного типа; слагающее ее образование называется латеритом;

· современная коричневато-серая почва, обогащенная каолинитом с большим количеством гумуса. В основании почвенного слоя – кремнисто-железистые конкреции.

В странах тропической Африки и на о. Мадагаскар мощность таких КВ 100-150 м.

В составе зоны латерита могут присутствовать горизонты, называемые кирасы. Мощность кирасы около 4 м. они соответствуют зонам цементации латеритной коры выветривания, но наблюдаются не всегда. Кирасы со временем, теряя железо, но одновременно обогащаясь алюминием, превращаются в бокситы, руду на алюминий.

В условиях умеренного влажного климата по гранитам образуется кора выветривания глинистого профиля. Профиль коры, развитой по гранитам, включает зоны:

· невыветрелый гранит;

· раздробленный частично измененный гранит;

· горизонт каолинитовых или монмориллонит-каолинитовых элювиальных глин.

По основным, ультраосновным породам и вулканитам состав глинистого горизонта коры меняется на монтмориллонит-нонтронитово-охристый.

В области умеренного влажного климата (таежно-подзолистая зона) формируется относительно маломощная (0,5-1,2 м) кора выветривания, отождествляемая с почвенным покровом (Страхов, 1963). Для него характерен небольшой мощности (1-3 см) гумусовый слой, обогащенный органическим веществом, составляющий здесь верхнюю часть профиля выветривания. Ниже располагается горизонт, сложенный преимущественно тонкодисперсным кремнеземом мощностью 15-20 см, иногда больше (элювиальный по Н.М. Страхову, 1963). В основании залегает слой с железистыми стяжениями, возникшими за счет поступления железа из вышележащих горизонтов. Это подзолистые почвы, подразделяемые на типы от дерновых до подзолов, для которых характерно максимальной развитие элювиального горизонта.

Значительное влияние климата на масштабы корообразования, на минеральный состав геохимического профиля КВ наряду с температурой определяется различиями в количестве влаги и биомассы, участвующих в выветривании.

В областях аридного климата с дефицитом влаги, а также в полярных и высокогорных, заметного разложения материала материнских пород не наблюдается, так как вода – это ен только среда, но и активный компонент химических реакций при выветривании. Преобладает механическое разрушение пород – кластогенез и формируются обломочные КВ.

Различия геохимического профиля кор выветривания в существенной мере связаны с климатическим фактором, климатической зоной, и зависят от состава исходной породы. Кроме климата формирование профиля коры выветривания и ее сохранение зависят от интенсивности и характера тектонических движений. Оптимальный условия для развития кор выветривания существуют в пределах устойчивых, малоподвижных фрагментов земной коры с ослабленной тектонической активностью, со сглаженными формами рельефа (пенепленизированный рельеф). Данным условиям отвечают платформы, плиты с ландшафтами равнин, холмогорий. В горно-складчатых зонах тектонически активных областей химическое выветривание проявляется, но из-за эрозии КВ могут сохраниться лишь локально, в пределах зон разломов, проседания.

Различия в геолого-структурных особенностях исходного образования, подвергаемого выветриванию (субстрата), обуславливает формирование КВ двух морфогенетических типов – площадного и линейного (сапожников, Витовская, 1981). Площадные КВ образуют сплошной покров на площади до сотен и тысяч квадратных километров, мощностью от нескольких до 100 м. линейные КВ, развиваясь по тектонически ослабленным зонам, развиты более локально, в соответствие с простиранием зоны, проникая на глубины до 1000 м.

Подъем территории отдельных участков влечет за собой расчленение рельефа, что затрудняет формирование КВ. Воздымание может превышать скорость корообразрования и КВ подвергнется денудации, не успев сформироваться. Огромные массы грубодисперсного материала выносятся при этом в конечные водоемы стока. Например, р. Обь ежегодно выносит в океан 394 км3 осадочного материала. Река Меконг, имеющая истоки в Гималаях, впадая в Южно-Китайское море, выносит 1 млрд. тонн. Общая масса продуктов выветривания, выносимая всеми реками в моря и океаны в виде взвесей, обломков, называется твердым стоком и составляет 18, 5 млрд. тонн/год.

Величина твердого стока зависит от скорости течения водных потоков. Для горных рек скорость течения может составлять 700 см/с, в равнинных реках от нескольких сантиметров до 100 см/с.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: