Угроза экофагии

Классическая молекулярная нанотехнология [2], [4] предвидит создание наномашин в основном сконструированных из богатых углеродом алмазоподобных материалов – даймонидов. Другая полезная нанохимия может включать в себя богатый алюминием сапфир (Al2O3), богатые бором (BN) или титаном материалы (TiC) и подобные им. TiC имеет наивысшую возможную рабочую температуру среди обычных материалов (точка плавления ~ 3410°K [5]), и, хотя алмаз может поцарапать TiC, TiC может быть использован для плавления алмаза.

Однако атомы Al, Ti и B гораздо более распространены в земной коре, чем в биомассе (81 300 ppm, 4400 ppm и 3 ppm, соответственно [5]), то есть в человеческом теле (0,1 ppm, 0 ppm, and 0,03 ppm [6]), что уменьшает прямую угрозу экофагии от таких систем. С другой стороны, углерод в тысячу раз менее распространён в земной коре (320 ppm, в основном карбонаты), чем в биосфере (~230 000 ppm).

Более того, возможность превращения литосферы в наномеханизмы не является главным поводом для беспокойства, поскольку обычные скалы содержат относительно мало источников энергии. Например, содержание естественных радиоактивных изотопов в скальных породах земной коры имеет значительные разброс, как функция их геологического происхождения и истории региона, но в основном находится в пределах 0.15-1.40 милиГр/год mGy/yr [7], давая мощность порядка 0.28-2.6 ×10-7 Вт/m3, в предположении, что горные породы имеют плотность, приблизительно равную средней земной плотности (5522 кг/м3 [5]).

Этого крайне недостаточно для питания нанороботов, способных к значительной активности; современные конструкции наномашин в основном требуют энергетических мощностей порядка 10-5 -10-9 Вт/m3 для того, чтобы достичь эффективных результатов [6]. (Биологические системы обычно функционируют с мощностями 10-2 -10-6 Вт/m3 [6].)

Солнечная энергия не доступна под земной поверхностью, и средний поток геотермального тепла составляет только 0,05 Вт/m2 на земной поверхности [6], что составляет только малую часть от солнечной энергии.

Гипотетические абиотические запасы нефти в земной коре [16], вероятно, не могут дать достаточной энергии для роста наномассы репликаторов по причине отсутствия окислителей глубоко под землёй, хотя были описаны потенциально большие популяции геобактерий [10-16], и в принципе некоторые необычные, хотя весьма ограниченные бактериальные источники энергии тоже могут быть заняты нанороботами.

Например, некоторые анаэробные бактерии используют металлы (вместо кислорода) в качестве акцепторов электронов [13], превращая железо из минералов вроде пироксена или оливина в железо в более окисленной форме в магнитных минералах вроде магнетита и маггемита, и используют геохемически возникающий водород, чтобы превращать СО2 в метан [11]. Подземные бактерии в отложениях Атрим Шейл производят 1.2 ×107 м3/ день природного газа (метана), потребляя остатки водорослей возрастом 370 млн. лет [17].

Также проводились эксперименты по биорекультивации в фирме Envirogen и в других, в ходе которых питающиеся загрязнениями бактерии намеренно вводились в землю, чтобы метаболизировать органические яды; в ходе полевых исследований выяснилось, что трудно заставить бактерии двигаться сквозь подземные водоносные слои, поскольку негативно заряженные клетки склонны склеиваться с позитивно заряженными оксидами железа в почве [18].

Однако главная тревога относительно экофагии состоит в том, что неудержимое распространение нанороботов-репликаторов или «реплиботов» превратит всю биосферу на поверхности земли (то есть экосистему всех живых организмов на поверхности Земли) в искусственные материалы некого рода – особенно, материалы вроде них самих, иначе говоря, в ещё большие количества самореплицирующихся наноробтов.

Поскольку продвинутые нанороботы могут быть сконструированы в основном из богатых углеродом алмазоподобных материалов [4], и поскольку ~12% всех атомов в человеческом теле (что типично для биологии в целом) – это атомы углерода, или ~23% по весу, запас углерода во всей земной биомассе может оказаться достаточным для самопроизводства конечной массы реплицирующихся алмазоидных нанороботов порядка ~0.23 Mbio, где Mbio – полный вес земной биомассы.

В отличие от большинства естественных материалов, биомасса может служить как источника углерода, так и источника энергии для репликации наномашин. Нанороботы-экофаги могут считать живые организмы в качестве естественных накопителей углерода, а биомассу – в качестве ценной руды для добычи углерода и энергии. Разумеется, биосистемы, из которых выделен весь углерод, больше не могут быть живыми, но вместо этого будут безжизненной химической грязью.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: