Основные сведения о конструкции молота

ИЗУЧЕНИЕ КОНСТРУКЦИИ И ПАСПОРТИЗАЦИЯ ПРИВОДНОГО

КОВОЧНОГО ПНЕВМАТИЧЕСКОГО МОЛОТА

Цель работы: изучение конструкции и работы приводного ковочного пневматического молота, определение его основных паспортных данных, получение навыков в составлении паспорта пневматического молота.

Основные сведения о конструкции молота

Приводные пневматические молоты предназначены для выполнения различных кузнечных работ, осуществляемых ковкой: протяжки, осадки, прошивки отверстий (сквозных и глухих), рубки, гибки, кузнечной сварки и т.д. На пневматических молотах возможна штамповка в подкладных штампах. Штамповка в закрытых штампах недопустима, так как жесткость ударов может привести к поломке бабы.

Приводные пневматические молоты (рис. 1.1) работают с помощью воздуха, поступающего из окружающей атмосферы в компрессорный цилиндр 6 и подвергающегося сжатию и разряжению при возвратно-поступательном движении поршня компрессора 8. Поршень компрессора 8 приводится в движение от приводного электродвигателя 1 через клиноременную передачу 2, редуктор 3, кривошип 4 и шатун 5. Следует отметить, что в кинематической цепи электродвигателя-поршня компрессора редуктора может и не быть. В этом случае шатун 5 соединен с кривошипным валом, на который жестко посажен маховик. Редуктор необходим для понижения числа оборотов кривошипа.

На рис.1.1 введены следующие обозначения: 1 – приводной электродвигатель; 2 – клиноременная передача; 3 – цилиндрический редуктор; 4 – кривошипный вал; 5 – шатун; 6 – цилиндр компрессора; 7 – рабочий цилиндр; 8 – поршень компрессора; 9 – поршень рабочего цилиндра; 10 – механизм воздухораспределения; 11 – станина молота; 12 – баба; 13, 14 – верхний и нижний боек; 15 – шабот; 16 – виброизоляция шабота.

По принципу действия пневматические молоты отличаются от паровоздушных, в которых падающие части разгоняются под действием пара или сжатого воздуха, поступающих в рабочий цилиндр. У пневматических молотов, как видно из рис. 1.1, воздух осуществляет только нежесткую связь между компрессорным 8 и рабочим 9 поршнями, являясь упругой подушкой, передающей движение от поршня компрессора 8 к рабочему поршню 9. Число ударов молота в минуту равно числу оборотов кривошипа 4.

а – общий вид; б – схема расположения рукояток управления

воздухораспределительного механизма (1-3 – положения рукояток)

Рисунок 1.1 – Устройство приводных пневматических молотов

Верхний подвижный боёк 13 закреплен на бабе 12, а нижний неподвижный боек 14 – на шаботе 15.

Пневматические молота выпускаются с массой падающих частей (мпч) 50...1000 кг и с энергией удара 0,8...28 кДж. Скорость в момент удара может составлять 5...7,5 м/с. Кратность масс равна 12.

Движение поршня компрессора является движением с одной степенью свободы, определяемой углом порота кривошипа (рис. 1.2). Рабочий поршень занимает самое нижнее положение; при этом боек находится на поковке, а компрессорный поршень – в самом верхнем положении (рис. 1.2, а). В этом положении верхняя и нижняя полости компрессорного цилиндра соединены с атмосферой, и начальное давление в них устанавливается равным атмосферному. Такое же давление устанавливается в верхней и нижней полостях рабочего цилиндра, поскольку эти полости сообщаются с помощью кранов с соответствующими полостями компрессорного цилиндра.


а – начальное положение; б – движение рабочего поршня вверх;

в – движение рабочего поршня вниз

Рисунок 1.2 – Схема движения поршней рабочего и компрессорного цилиндра

При движении поршня компрессорного цилиндра вниз от начального положения давление в нижних полостях обоих цилиндров увеличивается, а в верхних уменьшается. При возрастании давления в нижних полостях до величины, достаточной для преодоления силы тяжести подвижных частей, сопротивления трения и давления воздуха в поршневой полости рабочего цилиндра, рабочий поршень начнет движение вверх. При угле поворота кривошипа a2 = p, когда поршень компрессора займет нижнее положение, происходит соединение верхней полости компрессорного цилиндра с атмосферой (рис. 1.2, б). В этот момент нижняя полость компрессорного цилиндра с атмосферой не соединяется.

При определенном угле поворота кривошипа верхний поршень, поднимаясь вверх, закроет верхний канал и разобщит верхние полости цилиндров (рис. 1.2, в). В результате этого ход рабочего поршня начнет замедляться, и в какой-то момент рабочий поршень остановится в своем верхнем положении. При этом воздух в надпоршневой полости рабочего поршня будет сжатым. При опускании рабочего поршня давление в надпоршневой полости будет уменьшаться, и в момент, когда оно станет равным давлению в верхней полости компрессорного цилиндра, произойдет соединение обеих полостей через обратный клапан. Угол a4, при котором это происходит, называется углом выхода рабочего поршня из буфера.

При дальнейшем вращении кривошипа поршень компрессора приближается к крайнему верхнему положению, а рабочий поршень подходит к крайнему нижнему положению. Удар бойка по поковке обычно происходит при угле поворота кривошипа, который немного меньше 2p.

На рис. 1.3 показан общий вид изучаемого пневматического приводного молота модели МА4127 с мпч 50 кг.

1 – компрессорный цилиндр; 2 – рабочий цилиндр; 3 – рукоятка среднего крана;
4 – рукоятка верхнего и нижнего кранов; 5 – приводной электродвигатель; 6 – кожух клиноременной передачи; 7 – станина молота; 8 – ось кривошипного вала; 9 – рабочие бойки; 10 – педаль управления

Рисунок 1.3 – Общий вид изучаемого приводного пневматического молота

модели МА4127 с мпч 50 кг

Устройство изучаемого молота аналогично конструкции, приведенной на рис. 1.1, с той лишь разницей, что в его конструкции нет редуктора (привод шатуна осуществляется через клиноременную передачу, маховик и кривошипный вал) и шабот установлен непосредственно в станине. Установка шабота в станине молота возможна вследствие малости мпч, а, следовательно, и энергии удара.

Пневматические молоты могут осуществлять следующие режимы работы: холостой ход, удержание бабы на весу, автоматические последовательные удары и прижим поковки. В некоторых конструкциях молотов имеется режим одиночных ударов. Для осуществления вышеуказанных режимов на пневматических молотах применяют механизм воздухораспределения, состоящий из трех горизонтальных кранов (см. рис. 1.1, б): верхнего, среднего и нижнего. Верхний и нижний краны служат для управления работой молота, а средний – для перевода компрессора на холостой ход. Между верхним и нижним кранами в стакане молота имеется камера с обратным клапаном.

На рис. 1.4 изображена развернутая схема механизма воздухораспределения пневматических молотов. Верхний кран имеет два сечения, а нижний – три.

Рисунок 1.4 – Развернутая схема механизма воздухораспределения

пневматических молотов

Холостой ход

Чтобы не перегревать компрессор при длительных паузах, его переводят на холостой режим работы. Это осуществляется поворотом среднего крана в крайнее левое положение (кран открыт) (см. рис. 1.3, поз. 3), при этом рукоятки верхнего и нижнего кранов находятся в среднем положении (педаль также находится в среднем положении).

В результате этого верхняя полость рабочего цилиндра и верхняя полость компрессорного цилиндра сообщаются через верхний кран с атмосферой через открытый канал 3 (см. рис. 1.4). Нижняя полость компрессорного цилиндра также (через средний кран) сообщается с атмосферой через открытый канал 4 (при этом также открыты каналы 10 и 11).

Таким образом, компрессор работает, но давление в полостях рабочего и компрессорного цилиндров равно атмосферному, и баба под собственном весом покоится на нижнем бойке. Молот работает вхолостую.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: