Рис. 17.7. Спектры поглощения четырех разновидностей фоторецепторов

Зрительный пигмент палочек родопсин (Р) имеет максимум поглощения световых волн дли­ною 496 нм, но способен также к поглощению коротких и длинных волн светового диапазона. Зрительный пигмент колбочек, чувствительных к синему цвету (С), имеет максимум поглоще­ния 419 нм и не поглощает длинные волны оптического диапазона. Пигмент колбочек, чувст­вительных к зеленому цвету (3), имеет максимум поглощения при 531 нм, а пигмент чувстви­тельных к красному цвету колбочек (К) максимально поглощает волны длиной 596 нм.

 

из светопоглощающей молекулы ретиналя и опсина, который отличается составом аминокислот от белковой части родопсина. Кроме того, колбоч­ки содержат меньшее, чем палочки, количество зрительного пигмента, и для их возбуждения требуется энергия нескольких сотен фотонов. Поэто­му колбочки активируются лишь при дневном или достаточно ярком ис­кусственном освещении, они образуют фотопическую систему, или систе­му дневного зрения.

В сетчатке человека существуют три типа колбочек, различающихся ме­жду собой по составу аминокислот в опсине зрительного пигмента. Разли­чия в белковой части молекулы определяют особенности взаимодействия каждой из трех форм опсина с ретиналем и специфическую чувствитель­ность к световым волнам разной длины (рис. 17.7). Колбочки одного из трех типов максимально поглощают короткие световые волны с длиной 419 нм, что необходимо для восприятия синего цвета. Другой тип зритель­ного пигмента наиболее чувствителен к волнам средней длины и имеет максимум поглощения при 531 нм, он служит для восприятия зеленого цвета. Третий тип зрительного пигмента максимально поглощает длинные волны с максимумом при 559 нм, что позволяет воспринимать красный цвет. Наличие трех типов колбочек обеспечивает человеку восприятие всей цветовой палитры, в которой существует свыше семи миллионов цветовых градаций, тогда как скотопическая система палочек позволяет различать лишь около пятисот черно-белых градаций.


 


77.5.22. Рецепторный потенциал палочек и колбочек


Специфической особенностью фоторецепторов является темновой ток ка­тионов через открытые мембранные каналы внешних сегментов (рис. 17.8). Эти каналы открываются при высокой концентрации циклического гуано­зинмонофосфата, который является вторичным посредником рецепторного белка (зрительного пигмента). Темновой ток катионов деполяризует мем­брану фоторецептора до приблизительно —40 мВ, что приводит к выделе­нию медиатора в его синаптическом окончании. Активированные поглоще­нием света молекулы зрительного пигмента стимулируют активность фос­фодиэстеразы — фермента, расщепляющего цГМФ, поэтому при действии света на фоторецепторы в них уменьшается концентрация цГМФ. В резуль­тате управляемые этим посредником катионные каналы закрываются, и ток катионов в клетку прекращается. Вследствие непрерывного выхода ионов калия из клеток, мембрана фото­рецепторов гиперполяризуется приблизительно до —70 мВ, эта ги­перполяризация мембраны являет­ся рецепторным потенциалом. При возникновении рецепторного по­тенциала прекращается выделение глутамата в синаптических оконча­ниях фоторецептора.

Фоторецепторы образуют си­напсы с биполярными клетками двух типов, различающихся по способу управления хемозависи- мыми натриевыми каналами в си­напсах. Действие глутамата приво­дит к открытию каналов для ионов натрия и деполяризации мембра­ны одних биполярных клеток и к закрытию натриевых каналов и ги­перполяризации биполярных кле­ток другого типа. Наличие двух типов биполярных клеток необхо­димо для формирования антаго­низма между центром и перифери­ей рецептивных полей ганглиоз­ных клеток.


ЦГМФ-управляемые каналы ^а+


Ток ионов


К


Na


Активный транспорт


Внешний сегмент


Каналы для ионов калия


Внутренний сегмент


В темноте


Na


Высокая концентрация цГМФ, каналы открыты


Na+


На свету


Внешний сегмент


Низкая концентрация цГМФ, каналы закрыты


17.3.2.3. Адаптация фоторецепторов к изменениям освещенности

Временное ослепление при быст­ром переходе от темноты к яркому освещению исчезает спустя не­сколько секунд благодаря процес­су световой адаптации. Одним из механизмов световой адаптации является рефлекторное сужение


Рис. 17.8. Ток ионов через мембрану фо­торецептора в темноте и на свету.

Ионы натрия поступают в фоторецепторы че­рез катионные каналы внешнего сегмента, ко­торые открываются при высокой концентра­ции цГМФ в темноте (темновой ток). Поступ­ление в клетку ионов натрия вызывает депо­ляризацию мембраны фоторецептора до —40 мВ. На свету концентрация цГМФ уменьша­ется, что приводит к закрытию катионных ка­налов. Непрекращающийся выход ионов ка­лия ведет к гиперполяризации мембраны, ко­торая представляет собой рецепторный потен­циал.


 

 


зрачков, другой зависит от концентрации ионов кальция в колбочках. При поглощении света в мембранах фоторецепторов закрываются катионные каналы, что прекращает вхождение ионов натрия и кальция и уменьшает их внутриклеточную концентрацию. Высокая концентрация ионов кальция в темноте подавляет активность гуанилатциклазы — фермента, определяю­щего образование цГМФ из гуанозинтрифосфата. Вследствие снижения концентрации кальция, обусловленного поглощением света, активность гуанилатциклазы повышается, что ведет к дополнительному синтезу цГМФ. Повышение концентрации этого вещества приводит к открытию катионных каналов, восстановлению тока катионов в клетку и, соответст­венно, способности колбочек отвечать на световые раздражители как обычно. Низкая Концентрация ионов кальция способствует десенситизации колбочек, т. е. уменьшению их чувствительности к свету. Десенситизация обусловлена изменением свойств фосфодиэстеразы и белков катионных каналов, становящихся менее чувствительными к концентрации цГМФ.

Способность различать окружающие предметы исчезает на некоторое время при быстром переходе от яркого света к темноте. Она постепенно восстанавливается в ходе темновой адаптации, обусловленной расширени­ем зрачков и переключением зрительного восприятия с фотопической сис­темы на скотопическую. Темновую адаптацию палочек определяют мед­ленные изменения функциональной активности белков, приводящие к по­вышению их чувствительности. В механизме темновой адаптации участву­ют и горизонтальные клетки, способствующие увеличению центральной части рецептивных полей в условиях низкой освещенности.

17.3.3. Рецептивные поля клеток сетчатки

Выходные сигналы, передаваемые в ЦНС от сетчатки, возникают только в ганглиозных клетках, импульсная активность которых зависит от возбужде­ния фоторецепторов, а затем биполярных клеток, входящих в округлое ре­цептивное поле ганглиозной клетки. Размер рецептивных полей и количе­ство фоторецепторов, относящихся к одному рецептивному полю, варьи­руют от минимального в области центральной ямки до наибольшего на пе­риферии сетчатки. Малые рецептивные поля служат для различения мел­ких деталей наблюдаемых объектов в тех случаях, когда соседние детали воспринимаются под углом в несколько угловых минут. Большие рецеп­тивные поля вмещают изображение целого объекта, воспринимаемого под углом в несколько угловых градусов (Г соответствует рецептивному полю на поверхности сетчатки с диаметром около 0,25 мм).

Существуют два пути для передачи сигналов от фоторецепторов к ганг­лиозной клетке: прямой и непрямой. Прямой путь начинается от фоторе­цепторов, расположенных в центре рецептивного поля и образующих си­напс с биполярной клеткой, которая через другой синапс действует на ганг­лиозную клетку. Непрямой путь берет начало от фоторецепторов перифе­рии рецептивного поля, которая с центром состоит в реципрокных отно­шениях, обусловленных тормозным действием горизонтальных и амакрино­вых клеток (латеральное торможение).

17.3.3.1.Рецептивные поля с on-центрами и off-центрами

В сетчатке человека имеются два типа ганглиозных клеток, отличающихся реакцией на точечные световые стимулы, воздействовавшие на центр или периферию их рецептивного поля (рис. 17.9). Примерно половина гангли-

 

     
Биполярные К зрительному клетки нерву
 
Фоторецепторы (палочки)
     

Рис. 17.9. Рецептивные поля ганглиозных клеток сетчатки с on- и off-центрами.


A. Рецептивное поле ганглиозной клетки образуют все фоторецепторы и биполярные клетки, имеющие с нею синаптические контакты. Ганглиозные клетки постоянно генерируют потен­циалы действия, частота возникновения которых зависит от активности фоторецепторов и би­полярных клеток, входящих в ее рецептивное поле.

Б. Ганглиозная клетка on-типа увеличивает частоту электрических разрядов в ответ на свето­вое раздражение центра рецептивного поля и снижает свою электрическую активность при действии светового раздражителя на периферию рецептивного поля.

B. Ганглиозная клетка off-типа тормозится при действии света на центр ее рецептивного поля и увеличивает частоту нервных импульсов в ответ на раздражение периферии рецептивного поля.

озных клеток возбуждается действием света на центр рецептивного поля и тормозится при действии светового стимула на периферию рецептивного поля. Такие клетки принято называть оп-нейронами. Другая половина ганг­лиозных клеток возбуждается действием светового раздражителя на пери­ферию рецептивного поля и тормозится в ответ на световую стимуляцию центра рецептивного поля — они получили название off-нейронов.

Рецептивные поля ганглиозных клеток обоих типов в сетчатке пред­ставлены поровну, чередуясь друг с другом. Оба типа клеток очень слабо отвечают на равномерную диффузную засветку всего рецептивного поля, а наиболее сильным раздражителем для них является световой контраст, т. е. различная интенсивность засветки центра и периферии. Именно кон­трастирование деталей изображения дает необходимую информацию для зрительного восприятия в целом, тогда как абсолютная интенсивность от­раженного от наблюдаемого объекта света не столь важна. Восприятие гра­ней, т. е. восприятие контраста между соседними поверхностями с разной освещенностью, является наиболее информативным признаком изображе­ния, определяющим протяженность и позиции разных объектов.

17.3.3.2. Рецептивные поля цветового восприятия

Восприятие цвета основано на существовании шести первичных цветов, об­разующих три антагонистичные, или цветооппонентных, пары\ красный — зеленый, синий — желтый, белый — черный. Ганглиозные клетки, пере­дающие в центральную нервную систему информацию о цвете, различают­ся организацией своих рецептивных полей, состоящих из комбинаций трех существующих типов колбочек. Каждая колбочка предназначена для по­глощения электромагнитных волн определенной длины, однако сами они не кодируют информацию о длине волны и способны реагировать на очень яркий белый свет. И только наличие в рецептивном поле ганглиоз­ной клетки антагонистичных фоторецепторов создает нейронный канал для передачи информации об определенном цвете. При наличии только одного типа колбочек (монохромазия) человек не способен различить ни один цвет и воспринимает окружающий мир в черно-белой градации, как при скотопическом зрении. При наличии только двух типов колбочек (ди- хромазия) цветовое восприятие ограничено, и лишь существование трех ти­пов колбочек (трихромазия) обеспечивает полноту цветового восприятия. Возникновение монохромазии и дихромазии у человека обусловлено гене­тическими дефектами Х-хромосомы.

Концентрические широкополосные ганглиозные клетки имеют округлые рецептивные поля on- или off-типа, которые образованы колбочками, но предназначены для фотопического черно-белого зрения. Белый свет, попа­дающий в центр или на периферию такого рецептивного поля, возбуждает или тормозит активность соответствующей ганглиозной клетки, которая в итоге передает информацию об освещенности. Концентрические широко­полосные клетки суммируют сигналы от колбочек, поглощающих красный и зеленый цвет и расположенных в центре и на периферии рецептивного поля. Поступление сигналов от колбочек обоих типов происходит незави­симо друг от друга, а потому не создает цветового антагонизма и не позво­ляет широкополосным клеткам дифференцировать цвет (рис. 17.10).

Наиболее сильным раздражителем для концентрических противоцветных ганглиозных клеток сетчатки является действие антагонистических цветов на центр и периферию рецептивного поля. Одну разновидность противо­цветных ганглиозных клеток возбуждает действие красного цвета на центр ее рецептивного поля, в котором сосредоточены колбочки, чувствительные к красной части спектра, и зеленого цвета — на периферию, где имеются колбочки, чувствительные к нему. У другой разновидности концентриче­ских противоцветных клеток в центре рецептивного поля расположены колбочки, чувствительные к зеленой части спектра, а на периферии — к красной. Эти две разновидности концентрических противоцветных клеток различаются ответными реакциями на действие красного или зеленого цве­та на центр или периферию рецептивного поля подобно тому, как on- и off- нейроны различаются в зависимости от воздействия света на центр или пе­риферию рецептивного поля. Каждая из двух разновидностей противоцвет­ных клеток представляет собой нейронный канал, передающий информа­цию о действии красного или зеленого цвета, причем передача информа­ции тормозится действием антагонистического или оппонентного цвета.

Оппонентные отношения при восприятии синего и желтого цветов обеспечиваются в результате объединения в рецептивном поле колбочек, поглощающих короткие волны (синий цвет) с комбинацией из колбочек, реагирующих на зеленый и красный цвет, что при смешении дает воспри­ятие желтого цвета. Синий и желтый цвет оппонентны по отношению друг

А
Концентрические широкополосные клетки (ахроматические)

Концентрические простые противоцветные клетки

Концентрические простые противоцветные клетки

Простые противоцветные клетки





























Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: