Подготовка к расчету температурных полей по программам ниисфа

1. Для расчета двухмерного температурного поля с помощью ЭВМ необходимо подготовить исходные данные, которые получают при последовательном выполнении следующих видов работы:

а) выбирают участок ограждающей конструкции, двухмерной в отношении распределения температур. Решают вопрос о том, какое поле (плоское или осесимметричное) будет рассматриваться (рис. 1, а, б);

б) составляют схему расчета, вычерчивая в определенном масштабе изучаемую часть ограждающей конструкции, и, при необходимости, упрощают ее. При этом заменяют сложные конфигурации участков, например криволинейные, более простыми, если эта конфигурация имеет незначительное влияние в теплотехническом отношении, Наносят на чертеж границы области исследования и оси координат (х, у или r, z). Выделяют участки с различными теплопроводностями и указывают условия теплообмена на границах. Проставляют все необходимые размеры;

Рис. 1. Определение стационарных двухмерных температурных полей и схемы расположения чертежа двухмерной исследуемой области по отношению к осям координат

а - плоское температурное поле; б - осесимметричное температурное поле; в - схема расчета двухсвязной области; г - расчленение схемы (в) при расчете; д - схема расчета многокомпонентной области

в) расчленяют область исследования на элементарные блоки, выделяя отдельно участки с различными коэффициентами теплопроводности. Вычерчивают в масштабе схему расчленения исследуемой области и проставляют размеры всех блоков;

г) вычерчивают область исследования в условной системе координат х', у', когда все блоки принимаются одного и того же размера. Проставляют координаты вершин полигонов, ограничивающих участки области с различными теплопроводностями, и координаты вершин многоугольников, образующих границы исследуемой области. Нумеруют участки и границы исследуемой области и подписывают вершины областей теплопроводностей, температур (или тепловых потоков) на границах или окружающего воздуха и коэффициентов теплоотдачи;

д) пользуясь двумя чертежами, выполненными по пп. «в» и «г», и руководствуясь стандартной (обычной) последовательностью расположения, составляют комплект численных значений исходных данных, выписывая их в бланки набивки перфокарт (см. пп. 8 - 33 данного приложения);

е) после набивки перфокарт укладывают их в пакет задачи, предварительно пронумеровав и надписав группы данных, и передают оператору для пропуска на машине;

ж) в случае диагностических указаний проверочного блока на наличие в подготовленном пакете задачи ошибок их следует найти, устранить и заменить соответствующие карты, а затем повторно пропустить пакет на машине по программе проверки;

з) пакет задачи, не содержащей ошибок, передается оператору на счет с указанием о графическом выводе результатов или без него.

2. При подготовке к решению задач о стационарном трехмерном температурном поле необходимо выполнить следующую последовательность работ:

а) выбирают требуемый для расчета участок ограждающей конструкции, трехмерный в отношении распределения температур. Вычерчивают в масштабе три проекции ограждающих конструкций и проставляют все размеры;

б) составляют схему расчета, вычерчивая в аксонометрической проекции и определенном масштабе изучаемую часть ограждающей конструкции. При этом сложные конфигурации участков заменяют более простыми, состоящими из параллелепипедов. При такой замене необходимо учитывать влияющие в теплотехническом отношении детали конструкции. Наносят на чертеж границы области исследования и оси координат, выделяют в виде параллелепипедов участки с различными теплопроводностями, указывают условия теплообмена на границах н проставляют все размеры;

в) расчленяют область исследования на элементарные параллелепипеды плоскостями, параллельными координатным плоскостям XOY, ZOY, YOZ, выделяя отдельно участки с различной теплопроводностью, вычерчивают в масштабе схему расчленения исследуемой области на элементарные параллелепипеды и проставляют размеры;

г) вычерчивают три проекции области исследования на координатные плоскости в условной системе координат х', у', z', пользуясь схемами, приведенными в пп, «б» и «в». Когда все элементарные параллелепипеды принимаются одного и того же размера, проставляют координаты вершин проекций параллелепипедов, ограничивающих участки области с различными теплопроводностями и проекции плоскостей, образующих границы исследуемой области. Подписывают величины теплопроводностей, температуру на границах или окружающего воздуха и коэффициенты теплоотдачи.

Составляют комплект исходных данных, пользуясь схемами пп. «б», «в», «г» осуществляют набивку перфокарт, нумеруют их, подписывают группы данных и передают оператору на счет.

3. При выборе для расчета соответствующего сечения ограждающей конструкции необходимо тщательно проанализировать саму конструкцию и условия теплообмена на ее поверхностях с целью установления возможности расчета по двухмерной или трехмерной схеме. Например, если справедливо допущение о неизменности участка конструкции и условий теплообмена на поверхностях в направлении оси z на протяжении 5-10 ее толщин, расчет можно провести по двухмерной схеме.

4. Если искомое температурное поле ожидается симметричным, при расчете следует учесть его половину. Такое использование симметрии упрощает процесс подготовки исходных данных к расчету. Используя ось симметрии как границу исследуемой области с указанным условием теплообмена не следует забывать, что симметричными в отношении этой оси должны быть не только участки рассматриваемой конструкции, но и условия теплообмена ее с окружающей средой.

5. Ограничение области исследования производят из следующих соображений. Область исследования, с одной стороны, ограничивается естественными поверхностями конструкции, на которых заданы условия теплообмена, и, с другой стороны, ее необходимо искусственно ограничить для расчета, так как реальные конструкции имеют значительные размеры. С целью упрощения расчета желательно ограничить область возможно меньшими размерами, а значит и упростить подготовку пакета исходных данных задачи и уменьшить время счета на ЭВМ. Вместе с тем назначение границ исследуемой области связано с возможностью задать на них условия теплообмена с остальной частью конструкции и поэтому желательно эту границу относить как можно дальше, где уже фактически происходит одномерный процесс теплоотдачи. Такое предположение допустимо уже на расстоянии около 5-7 толщин конструкции от теплопроводного включения. На такой границе возможно задавать тепловой поток, равный нулю в направлении, перпендикулярном этой границе. Правильность назначения возможно проверить только после расчета на ЭВМ путем сопоставления полученных расчетом температур по назначенной границе с рассчитанными по формулам одномерного распределения.

6. При расчете по двухмерной схеме с использованием программ НИИСФа область исследования размещают полностью в первой четверти прямоугольной системы координат таким образом, чтобы часть ее границ совпадала с осями координат х, у (см. рис. 2, в - д). Если область исследования состоит из нескольких частей с различными теплопроводностями, то каждую такую часть следует выделить отдельно в виде участков областей. Участки не могут быть многосвязными, т.е. внутри них не допускаются отверстия. Участки с одинаковыми теплопроводностями, появившиеся в разных местах области, выделяются как отдельные участки.

Исследуемую область рекомендуется разместить таким образом, чтобы по оси у было меньшее число разбиений на элементарные интервалы.

Рис. 2. Расположение наклонной границы исследуемой области

Исследуемую область разбивают на прямоугольные блоки взаимно перпендикулярными линиями, параллельными осям координат. Разбивка на блоки может быть неравномерной, но обязательно должна быть сквозной, т.е. не допускается объединение двух рядов блоков в один. Линии разбивки должны совпадать с границами участков с различными теплопроводностями. В части области, где границы (или границы ее участков) наклонены к осям координат, разбивку рекомендуется провести с одинаковыми интервалами вдоль осей таким образом, чтобы наклонная граница проходила через середину граней блоков (см. рис. 2). В этом случае существенно упрощается подготовка исходных данных. В тех частях исследуемой области, где ожидаются резкие изменения температуры и где желательно получить более точные результаты, следует приводить более детальную разбивку на блоки. Каждую сторону участка области рекомендуется разбивать не менее, чем на два-три интервала.

Чертеж разбивки на блоки в условной системе координат располагается по отношению к осям координат таким образом, что первые линии отступают от оси на один интервал, а абсциссы и ординаты следующих линий возрастают с шагом, равным единице в направлении осей координат. Особенностью вычерчивания схемы исследуемой области в условных координатах является то, что все блоки вычерчиваются одинакового размера, обеспечивая удобства и четкость при описании контуров участка области и границ, особенно в случаях с неравномерной разбивкой.

Участки области представляют собой замкнутые многоугольники, содержащие произвольное число точек перелома. Вершинами участка области называют точки перелома. На чертеже у каждой вершины выписываются парой (х, у) значения ее координат. При выписывании координат на блоки обход осуществляют последовательно против часовой стрелки, Последняя вершина не должна совпадать с первой, так как предполагается, что многоугольник всегда замкнут.

Принимаемые в расчет граничные условия могут быть различными по типу и численным значениям на отдельных участках границ исследуемой области. Участки границ с одинаковыми условиями теплообмена с окружающим воздухом задают в виде незамкнутых многоугольников, содержащих произвольное число точек перелома. Вершинами участка границы называют начало, конец и точки перелома многоугольника. В частном случае участок границы может быть задан в виде отрезка линии с двумя точками. Многоугольник, определявший один участок границы, обязательно должен быть разомкнут. Например, если на поверхности отверстия в исследуемой области заданы одинаковые условия теплообмена и среды, то принимаемая в расчет граница в этом случае должна состоять хотя бы из двух участков, В соответствии с этим показанная на рис. 1, в-д граница по замкнутому контуру fcde с одинаковыми условиями теплообмена на всех ее участках, должна быть учтена расчлененной на участок ef и fcde. При задании граничных условий не допускается неопределенность, т.е. граничные условия должны быть определены на всех границах исследуемой области.

Исходные данные об условиях на границах исследуемой области подготавливаются в форме, соответствующей граничным условиям третьего рода, т.е. в виде значений температуры воздуха t н и коэффициента теплоотдачи с поверхности aн. В случае задания на каком-либо участке границы температуры поверхности ее назначают равной температуре воздуха и одновременно принимают в расчет очень большое значение коэффициента теплоотдачи поверхности, равное 0,9·1018Вт/(м2·°С). Если на некотором участке границы требуется задать величину теплового потока q, Вт/м2, т.е. граничное условие второго рода, то его величину задают как условную температуру окружающей среды, равную численному значению q, принимая одновременно a=0. При необходимости задания на одной и той же границе смешанных граничных условий третьего и второго родов, нужно это условие привести к условию третьего рода, задавая значение условной температуры воздуха t усл= t н+ q /aн.

Если требуется решить задачу, в которой на всех участках границ исследуемой области заданы значения тепловых потоков, то необходимо учесть два обстоятельства: а) хотя бы в одной точке границы должно быть задано граничное условие первого рода, т.е. должна быть обусловлена точка отсчета температур в исследуемом температурном поле, например в задаче, приведенной на рис. 3, температура в точке В должна быть равна нулю; б) задаваемые в качестве граничных условий тепловые потоки, входящие в исследуемую область и выходящие из нее, должны быть сбалансированы с большой точностью (не менее 0,001%), например, в задаче на рис. 3 должно соблюдаться равенство S q x1=S q y1, в противном случае при контроле баланса тепловых потоков будет обнаружен недопустимый разбаланс, и задача будет снята с расчета по ошибке.

Рис. 3. Постановка задачи в случае, когда на границах заданы только тепловые потоки

7. При расчете по трехмерной схеме область исследования размещают полностью в первом октанте правой прямоугольной системы координат (рис. 4). Исследуемая область должна быть ограничена параллелепипедом и может состоять из нескольких соприкасающихся друг с другом участков материалов с различной теплопроводностью (рис. 4). Внутри области допускаются полости в виде параллелепипеда. Участки с неизменной теплопроводностью должны иметь форму параллелепипедов, стороны которых должны быть параллельны координатным плоскостям, т.е. плоскостям хоу, уоz, xoz. Сложные участки с неизменной теплопроводностью должны быть представлены несколькими параллелепипедами. Источники тепла задаются едиными на весь объем участка.

Рис. 4. Схема расположения трехмерной исследуемой области по отношению к осям координат

Исследуемую область разбивают на элементарные параллелепипеды взаимно перпендикулярными плоскостями, параллельными координатным плоскостям. Разбивка на параллелепипеды может быть неравномерной. Плоскости разбивки должны совпадать с границами участков с различными теплопроводностями. В тех частях исследуемой области, где ожидаются резкие изменения температуры, следует проводить более детальную разбивку.

Исходные данные об условиях на границе исследуемой области подготавливают так же, как при расчете по двухмерной схеме.

Последовательность подготовки исходных данных к расчету на ЭВМ по программам НИИСФа

8. Комплект исходных данных программы расчета двухмерных температурных полей состоит из 10 групп и выписывается и строгом порядке. Все числа должны быть вещественными, за исключением номера варианта и управляющего массива, которые должны быть целого типа. Последовательность этих групп следующая.

9. Номер N 0 рассчитываемого варианта должен быть положительным, если решается плоская задача в прямоугольной системе координат х, у и отрицательным для осесимметричной задачи в системе координат r, z.

10. Группа данных BUF - управляющий массив, состоящий из 6 величин:

а) количество N интервалов разбивки по оси у или z;

б) количество L интервалов разбивки по оси х или r;

в) количество участков Z 1 области с различными теплопроводностями;

г) число границ Z 2 области, на которых задаются температуры поверхности TEMP или коэффициенты теплоотдачи ALPHA и соответствующие температуры окружающей среды, либо потоки;

д) число M 1 вершин участка исследуемой области, имеющего наибольшее число вершин;

е) число М 2 вершин на границе (или в участке границы), имеющей наибольшее число вершин.

11. Группа данных DX (DR) - вершины интервалов между смежными линиями разбивки по оси х или r, обычно задаваемые в метрах. Количество данных в группе должно быть L +2. Нумерация интервалов производится в направлении осей х или r и начинается с нуля, т.е. DX 0, DX 1,..,, DX L, DX L+1 \ (или в случае оси r - DR 0, DR 1,...., DR L, DR L+1), Для плоской задачи интервал 0 следует назначить равным нулю. Для осесимметричной задачи в случае, если граница исследуемой области слева не совпадает с осью симметрии (например, расчет полей цилиндрической конструкции), DR 0 должно быть равно расстоянию от оси симметрии до этой границы. В случае совпадения следует положить DR 0=0. Значение интервала DX L+1(DR L+1) используется для управления видом печати искомых температур. Если величина DX L+1>0 (DR L+1>0), то на печать выдастся распределение температур в углах элементарных блоков. Если величина DX L+1=0 (DR L+1>0) то на печать выдаются две таблицы распределений температур - в центрах элементарных блоков (узлах) и в углах, а в случае DX L+1<0 (DR L+1<0) на печать выдается только распределение температур в центрах элементарных блоков. Следует заметить, что в процессе счета по программе величина DX L+1(DR L+1) становится равной нулю.

12. Группа данных DY (DZ) - та же, что и в п. 11, но по оси у или z, т.е. DY 0, DY 1,..., DYN, DYN +1 или DZ 0, DZ 1,..., DZN, DZN +1.Количество данных DY или DZ в группе должно быть равно N +2.

Значения начального и конечного интервала DY(DZ) используются для специальных целей: начальный - для управления масштабом чертежа при автоматическом вычерчивании результатов расчета, конечный - для масштабирования интервалов разбивки, т.е. записи их не в метрах. Если величина DY 0(DZ 0) равна нулю, то осуществляется автоматический выбор масштаба чертежа, ограничивающий его условной рамкой размером 25´35 см. Масштаб чертежа (М) представляет собой отношение размеров на чертеже к соответствующему размеру в исследуемой области, При использовании выбранного пользователем масштаба величину DY 0(DZ 0) назначают равной М; а комплекте данных величина масштаба М записывается в виде действительного числа. При назначении масштаба чертежа следует иметь в виду, что, с одной стороны, размер чертежа не должен выходить за пределы размера планшета графопостроителя (100 см по оси абсцисс и 80 см по оси ординат), а с другой - наибольший размер чертежа по любой из осей не должен быть меньше 10 см, так как в противном случае будут искажены соотношения размеров. Величины интервалов DX и DY обычно задают в метрах. В этом случае элемент DYN +1 должен быть равен нулю. В случае необходимости эти величины можно задавать в других единицах, тогда величина DYN +1 должна быть равна масштабу s. Масштаб s - это число, на которое надо поделить численные значения интервалов DX и DY, чтобы пересчитать их в метрах. Например, если интервал задан в сантиметрах, то s =100.

13. Группа данных CORD1 - список координат вершин участков областей и условной системе координат. Каждая вершина представляется парой координат (х', у' или r', z'). Данные располагаются в следующем порядке: номер участка области (НУ), число вершин (НB) в этом участке, координата х' 1 по оси х' (или r') и координата у '1 по оси y' (или z') первой вершины, далее второй вершины x' 2 y' 2 и т.д. до последней вершины первого участка. Затем данные о следующем участке области. В таком порядке должны быть представлены вершины всех участков исследуемой области. Вершины нумеруются против часовой стрелки, начиная с вершины, ближайшей к началу осей координат. Если число вершин в некотором участке области меньше M1, то необходимо произвести дополнение нулями до M1. Всего данных в группе CORD1 должно быть 2·zl·(М 1+1).

Исследуемую область можно расчленить взаимно перпендикулярными линиями (параллельными осям координат только на прямоугольные блоки, поэтому в той части области, где ее граница или участок наклонены к оси, эти границы должны быть учтены в виде ступенек с соответствующим числом переломов. Однако, если разбивка исследуемой области на блоки в местах наклонных границ была произведена с одинаковыми интервалами вдоль каждой из осей координат (при этом интервалы DX могут быть равны интервалам DY), то можно значительно сократить количество исходных данных об этом участке границы. В этом случае в списке CORD1 достаточно указать только координаты начала и конца учитываемого наклонного участка границы. Начальная и конечная точки этого участка отмечены квадратами на рис. 2. Как видим, в этом случае координаты вершин многоугольника, образующего границу, будут дробными числами, кратными 0,5.

14. Группа данных XLAM - список теплопроводностей l х (l r) в направлении оси х (или r), Вт/(м·°С) для различных участков области, располагаемые в порядке возрастания номеров участков области. Первый элемент массива необходим по техническим причинам и всегда равен нулю. Всего данных XLAM должно быть Z 1+1. Назначить lx=0 нельзя, так как при решении задачи это вызывает деление на нуль, и машина прекращает счет.

15. То же, что и в п. 23, но по оси у или z - YLAM, т.е. l у или lz.

16. Группа данных CORD2 - список координат границ (участков границ) в условной системе координат. Каждая вершина представлена парой координат х', у' или r', z', Данные располагаются в следующем порядке: номер участка границы (НГ), число вершин (ЧВ) в этом участке, координата начала участка границы х' 1(по оси х' или r') и координата у' 1 по оси (у ' или z'), далее координаты первой вершины x '2, y' 2 и т.д. до конца первого участка границы. Затем данные о следующем участке границы. Таким образом, должны быть представлены все границы исследуемой области. Координаты вершин нумеруются против часовой стрелки. Если число вершин на участке границы меньше M1, то необходимо дополнение нулями до М 2. Количество данных в CORD2 должно быть 2· z 2(M 2+1). Координаты вершин границ (или участков границ), наклоненных к осям координат, должны быть учтены в соответствии с п. 13.

17. Группа данных ALPHA о коэффициентах теплоотдачи поверхности a, Вт/(м2·°С), - границы (участков границ) исследуемой области. Данные располагаются в порядке возрастания номером границ. Для граничных условий первого рода принимать a=0,9·1018. В случае, если на соответствующем участке границы задана величина теплового потока, перпендикулярного границе, принимать условно a=0. Всего данных ALPHA должно быть z 2.

18. Группа данных TEMP о температурах на границах, °С, располагается в порядке возрастания номеров границ. Если при подготовке группы данных ALPHA на каких-либо участках границы принято a=0, то соответствующие данные TEMP превращаются в величины тепловых потоков, Вт/м2, входящих (записываются со знаком "+") в исследуемую область или выходящих (знак "-") из нее. Всего данных в группе должно быть z 2.

19. Подготовленные данные записываются на бланках поколонной набивки перфокарт в бесформатном виде. Между числами следует обязательно оставлять не менее двух пробелов. Для отделения целой части от дробной используется точка либо запятая. При записи следующих подряд одинаковых чисел рекомендуется использовать сокращенную запись вида I X D, где I целая константа, указывающая число повторений действительного числа. Например, запись 3´0,15 эквивалентна записи 0·15 0·15 0·15. На одной строке перфокарты допускается разместить не более 30 чисел с учетом повторения. В конце данных указывается признак конца файла /*. При наличии меньшего, чем определено BUF количества данных, этот признак вводится машиной, и задача снимается с соответствующей диагностикой об ошибке.

20. Комплект исходных данных программ расчета трехмерных температурных полей состоит из 13 групп. Четыре группы - N 0, BUF, CORD1, CORD2 должны быть целого типа, остальные - вещественного типа. Последовательность этих групп следующая.

21. Номер N 0 рассчитываемого варианта. Номер может быть в пределах 10£ N 0£32000.

22. Группа данных BUF - управляющий массив, состоящий из пяти величин:

а) количество NX интервалов разбивки по оси х;

б) количество NY интервалов разбивки по оси у;

в) количество NZ интервалов разбивки по оси z;

г) количество участков К1 области с различной теплопроводностью;

д) число границ К2 области, на которых задаются условия теплообмена с окружающей средой, либо тепловые потоки.

23. Группа данных DX состоит из NX величин. Это величины интервалов между смежными плоскостями разбивки по оси х, задаваемые в метрах. Нумерация интервалов производится в направлении оси х, т.е. DX 1, DX 2, …, DXNX.

24. Группа данных DY состоит из NY величин, то же, что и DX, но по оси y.

25. Группа данных DZ состоит из NZ величин, то же, что и DX, но по оси z.

26. Группа данных CORD1 - список данных об участках областей с различной теплопроводностью. Данные располагаются в двухмерной таблице, причем каждая строка отводится для одного участка, и таким образом число строк в этой таблице соответствует числу участков. Строка состоит из 7 величин. В первой колонке помещают порядковый номер участка, затем три координаты (х, у, z) ближайшего к началу координат угла участка, и, наконец, три величины L, М, N о числе интервалов в участке по направлению осей координат х, у, z. Координаты приводятся в условной системе. Строчки располагают в порядке номеров участков. Всего данных в группе CORD1 должны быть 7ХK1 величин.

27. Группа данных XLAM - список теплопроводностей в Вт/(м·°С) в направлении оси х для различных участков области, располагаемые по порядку номеров. Всего данных XLAM должно быть К1.

28. Группа данных YLAM, то же, что и XLAM, но по оси у.

29. Группа данных ZLAM - то же, что и XLAM, но по оси z.

30. Группа данных Q - список величин источников тепла, Вт/м3, вводимого (со знаком «+») или уходящего (со знаком «-») в участке области. Данные размещаются по порядку номеров участков. При отсутствии источников следует задавать нули. Всего данных должно быть К1.

31. Группа данных CORD2 - список данных о границах. Данные располагаются в двухмерной таблице, причем каждая строка отводятся для одного участка границы, и таким образом число строк в этой таблице соответствует числу участков границ. Строка состоит из 7 величин. В первой колонке помещают порядковый номер участка границы, затем для этой границы три координаты (х, у, z) вершины, ближайшей к началу координат и, наконец, три величины L, М, N о числе интервалов на участке границы в направлении осей координат х, у, z. Данные о координатах определяют в условной системе координат. Строчки располагают в порядке номеров границ. Так как границы представляют собой плоскости, то одна из величин L, М или N должна быть равна нулю.

32. Группа данных ALPHA - список коэффициентов теплоотдачи поверхности a, Вт/(м2·°С), участков границ исследуемой области. Данные располагаются в порядке возрастания номеров границ. Для граничных условий первого рода принимать a=0,9·1018. В случае, если на соответствующем участке границы задана величина теплового потока, перпендикулярного границе, принимать условно a=0.

33. Группа данных TEMP либо о температурах на границах, °С, либо о тепловых потоках, Вт/м2, располагающиеся в порядке возрастания номеров границ. Если a≠0, то TEMP представляет данные о температурах, в случае a=0, TEMP представляет данные о тепловых потоках. Входящие в исследуемую область потоки записываются со знаком «+», выходящие - «-»,

В конце данных указывается признак конца файла /*.

34. Пересчет температурного поля, определенного при температурах t вс и t нс (назовем их старыми) в поле, определяемое температурами t вн и t вн (назовем их новыми), при неизменных всех без исключения остальных параметрах (геометрии и значений l i и a i) производится в двух случаях:

а) необходимо определить новое значение температуры ti н в какой-либо точке i исследуемой области внутри или на границе ее при новых значениях температур наружного и внутреннего воздуха t нн и t вн. Температура ti н в этой точке определяется по формуле

;                                           (1)

б) требуется определить новое значение температуры наружного воздуха t нн, при которой температура ti н в точке i исследуемой области достигает заданного значения. Температура наружного воздуха определяется в этом случае по формуле

.                                              (2)

Плотность теплового потока q с, определенная при значении температур t вс и t нс, пересчитывается в плотность теплового потока q н, соответствующего значениям t вн и t нс, по формуле

.                                                     (3)

Пример 1. В точке i исследуемой области получено значение температуры ti с=6,32°С при температурах воздуха снаружи помещения t нс=-38°С и внутри t вс=18°С. Определим температуру в этой же точке, используя эту конструкцию в другой климатической зоне, т.е. при температуре снаружи t нн=-30°С, Расчет производим по формуле

°С.

Пример 2. В точке i на внутренней поверхности ограждающей конструкции получена недопустимо низкая температура, равная ti с=6,91°С при температурах наружного воздуха t нс=-30°С и внутри помещения t вс=18°С.

Определим температуру наружного воздуха, при которой температура на поверхности в точке i будет удовлетворять требованиям норм из условия невыпадения конденсата, т.е. равной 8,8°С при относительной влажности воздуха 55%. Эту температуру рассчитываем по формуле

°С.

При температуре наружного воздуха ниже -21,9°С будет выпадать конденсат на внутренней поверхности стены.

35. Рекомендуемый комплекс программ для расчета температурных полей написан на Фортране, предназначен для использования на ЭВМ серии ЕС, использует память на магнитных дисках. Вариант программы для решения двухмерных задач1 эффективно использовать на ЭВМ серии ЕС-1033 и более крупных машинах, требует минимально 250 Кбайт оперативной памяти и при объеме файла на диске 4-5 Кбайт, решает задачи, расчленяемые в пределах 4000-4500 элементарных блоков. Вариант программы для решения трехмерных задач2 эффективно использовать на более крупных ЭВМ (ЕС-1040, ЕС-1060), требует минимально 256 Кбайт оперативной памяти и решает задачи, расчленяемые в пределах 25000-30000 элементарных параллелепипедов. Отличительные особенности комплекса: возможность решения неоднородных задач со сложной геометрией, компактный способ представления исходных данных и их контроль, проверка решения по балансу тепловых потоков.

______________

1 Программа расчета двухмерных стационарных температурных полей сдана в МОФАП при ЦНИИпроекте, шифр 4-28Н.

2 Программа расчета трехмерных стационарных температурных полей имеется в НИИСФе

Сопровождающие расчет автоматическое вычерчивание с помощью графопостроителя схемы конструкции и рассчитанного поля изолиний температур в двухмерном случае и аксонометрическое построение схемы конструкции и поля изолиний поверхностей в трехмерном случае обеспечивают наглядное представление результатов и происходящих тепловых процессов в рассчитываемых ограждающих конструкциях.

Рис. 5. Выделение для расчета фрагмента стыкового соединения стеновых панелей и перегородки

Рис. 6. Схема разбивки исследуемой области на блоки

Пример 3. Определить сопротивление теплопередаче ограждающей конструкции из трехслойной панели, включающей стык с внутренней стеной. Анализируемый участок конструкции схематически изображен на рис. 5. На нем выделены две части - неоднородной по теплотехническим свойствам ограждающей конструкции длиной L но и однородной конструкции длиной L гл. Предполагается, что рассматриваемая конструкция простирается перпендикулярно к плоскости чертежа, и температурные условия неизменны по высоте. Распределение температуры в этом случае во всех плоскостях, параллельных плоскости поперечного сечения стыка панели, будет одинаково, т.е. в плоскости рассматриваемого поперечного сечения будет двухмерное температурное поле. На наружной стороне ограждения заданы температура воздуха t в=-32°C и коэффициент теплоотдачи поверхности aн=23 Вт/(м2·°С). На внутренней стороне ограждения заданы температура воздуха t в=18°C и коэффициент теплоотдачи поверхности aв=8,7 Вт/(м2·°С). В углу (на расстоянии по 30 мм от вершины) принято значение aу=7,6 Вт/(м2·°С). В панели на расстоянии от оси стыка около трех толщин ее возможно практически одномерное распределение температуры, т.е. q х=0 в сечениях, отстоящих от оси на 480 мм (см. рис. 6). Поэтому здесь назначены границы исследуемой области с упомянутым условием. Подобным способом была назначена и граница исследуемой области d-d, во внутренней стене отстоящая от внутренней поверхности наружной стены на 410 мм.

Чертеж принятой разбивки исследуемой области на блоки с неравномерными, интервалами приведен на рис. 6. Здесь же жирными линиями показаны участки исследуемой области с различными теплопроводностями. Размеры блоков в мм. Всего в исследуемой области оказалось 509 элементарных блоков. На рис. 7 приведена принятая разбивка исследуемой области, вычерченная в условных координатах. На этом рисунке около вершин участков исследуемой области и участков границ подписаны их координаты (отделенные одна от другой точкой с запятой). Например, 9, 1 означает х '=9, у '=1, в условных координатах. Начало и конец участка границы обведены кружками.

В табл. 1 приведен комплект исходной информации к этой задаче.

Выполнив на ЭВМ расчет температурного поля стыка, переходим к расчету приведенного сопротивления теплопередаче. Предварительно вычислим величину

R о.гл=1/aв+dжб/lжб+lиз/lиз+1/aн=1/8,7+(0,05+0,03)/2,04+0,08/0,05+1/23=1,798 м2·°С/Вт.

Используем величину S Q сумму тепловых потоков, входящих в исследуемую область, равную 29,2655 Вт/м. Искомую величину R0 определяем по формуле

 м2·°С/Вт

В результате просмотра выведенных на печать значений температур на внутренней поверхности ограждения выявлено самое холодное место - вблизи железобетонного ребра (см. рис. 6, точка и), где температура равна 6,072°С»6,1°С. Это недопустимо для жилых помещений, так как на внутренней поверхности ограждений должна быть температура выше температуры точки росы t р=8,8°С при влажности воздуха в них 55%. Как видим, рассматриваемый стык нуждается в доработке.

Таблица 1

Полный комплект информации к примеру 3

1) N 0=2

 

 

 

 

 

 

 

 

 

 

2) BUF

N

L

z 1

z 2

M 1

M 2

 

 

 

 

   

30

25

7

7

8

4

 

 

 

 

3) DX

0

1

2

3

4

5

6

7

8

9

  0

0.000

0.005

0.005

0.010

0.010

0.010

0.000

0.010

0.010

0.010

  10

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.020

0.030

0.040

  20

0.040

0.040

0.040

0.040

0.040

0.040

0.000

 

 

 

4) DY

0

1

2

3

4

5

6

7

8

9

  0

0.000

0.040

0.040

0.040

0.040

0.040

0.040

0.040

0.040

0.030

  10

0.020

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

  20

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

0.010

  30

0.010

0.000

 

 

 

 

 

 

 

 

5) CORD1

 

 

 

 

 

 

 

 

 

 

    ну

чв

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y

X

Y
    1

6

1

1

9

1

9

15

13

15

13

18

1

18

0

0

0

0
    2

4

1

18

13

18

13

22

2

22

0

0

0

0

0

0

0

0
    3

4

15

18

26

18

26

26

15

26

0

0

0

0

0

0

0

0
    4

8

13

15

26

15

26

18

15

18

15

26

26

26

26

31

31

31
    5

4

1

22

2

22

2

24

1

24

0

0

0

0

0

0

0

0
    6

1

1

24

3

24

3

28

1

28

0

0

0

0

0

0

0

0
  Z1 7

2

2

22

3

22

13

31

2

31

2

28

3

28

3

24

2

24
6) XLAM

ну

 

1

2

3

4

5

6

7

 

   

 

0

2.04

0.05

0.05

2.04

0.05

0.06

2.04

 

7) YLAM

ну

 

1

2

3

4

5

6

7

 

   

 

0

2.04

0.05

0.05

2.04

0.05

0.06

2.04

 

8) CORD2

ну

чв

1

2

3

4

 

   

 

 

X

Y

X

Y

X

Y

X

Y

 

   

1

2

1

1

9

1

0

0

0

0

 

   

2

2

9

1

9

10

0

0

0

0

 

   

3

3

9

12

9

15

12

15

0

0

 

   

4

2

12

15

26

15

0

0

0

0

 

   

5

2

26

15

26

31

0

0

0

0

 

   

6

4

26

31

2

31

2

28

1

28

 

  Z2

7

2

1

28

1

1

0

0

0

0

 

9) ALPHA

нг

1

2

3

4

5

6

7

 

 

   

 

0

8,7

7,6

8,7

0

23

20

 

 

10) TEMP

нг

1

2

3

4

5

6

7

 

 

   

 

0

18

18

18

0

-32

0

 

 

                                                                     

Рис. 7. Схема разбивки исследуемой области на блоки в условных ординатах

В начале изложения этого примера было указано, что положение границы исследуемой области а-а назначили по опыту подобных расчетов т.е. с некоторым риском ошибиться. Поэтому по окончании расчета следует удостовериться, что эта граница не была назначена слишком близко от оси симметрии стыка. Наиболее простой проверкой является сопоставление полученной по расчету на ЭВM температуры на внутренней поверхности стены в сечении а-а (14,523°C) с температурой, рассчитанной по известной формуле для однородного ограждения, т.е. для ограждения, в котором имеет место одномерный температурный поток

°С.

Расхождение, как видим, составляет 0,28°С. Оно указывает на некоторую неточность в расчетах, вызванную отсутствием запаса в положении границы а-а исследуемой области. Для выяснения величины вводимой таким образом ошибки в искомые величины t п и S Q расчет был повторен в случае, когда граница а-а была отодвинута вправо на 480 мм. Это дополнительный участок по оси ох прошли 12 интервалами размером 0,04 м каждый. Разбивка по оси оy осталась неизменной. В этом случае исследуемая область оказалась расчлененной на 701 элементарный блок. Время расчета составило 15 мин. Температура в самом холодном месте на внутренней поверхности оказалась 6,074°С, т.е. на 0,002°С выше, чем в результате расчета основного варианта, Сумма тепловых потоков, входящих в часть исследуемой области, которая соответствует области принятой в расчет в основном варианте, равна S Q =29,219 Вт/м, т.е. на 0,047 Вт/м (или на 0,16%) меньше, чем получилось в результате расчета основного варианта. Напомним, что рассматриваемый вариант расчета поставили с целью более точно воспроизвести взаимодействие исследуемой области с отсекаемой частью ограждающей конструкции. Теперь температура на внутренней поверхности стены в точке, лежащей на границе а-а, отодвинутой от границы а-а на 480 мм, оказалась 14,802°С. т.е. совпадающей до 0,001°С с температурой, полученной по расчету одномерной схемы.

Пример 4. Требуется рассчитать приведенное сопротивление теплопередаче торцовой трехслойной панели здания (рис. 8, а). Панель изготовлена из железобетона теплопроводностью 2,04 Вт/(м·°С). Внутрь панели вложены четыре термовкладыша из минераловатного утеплителя теплопроводностью 0,06 Вт/(м·°С). По краям панели и между вкладышами расположены ребра из железобетона толщиной 50 мм, соединяющие слои железобетона с наружной и внутренней сторон.

Рис. 8. Выделение области исследования для расчета и схемы рассчитываемой панели

а - рассчитываемая панель; б - исследуемая область для расчета по программе

Рис. 9. Схема разбивки исследуемой области на блоки

Процесс теплопередачи в таких панелях трехмерен, так как распределение температур определяется не только потоками тепла, перпендикулярными плоскости стены, но и потоками тепла в плоскости стены.

Теплотехнический расчет таких ограждений состоит в определении трехмерного температурного поля и полей тепловых потоков на поверхностях панели.

Так как поле температур симметрично относительно осей I-I и II-II (см. рис. 8, а), проходящих через середину панели в плоскости стены, то для расчета возможно выделить исследуемую область по этим сечениям, приняв по условию симметрии равные нулю тепловые потоки, перпендикулярные этим осям. Также возможно провести ограничение области исследования по осям III-III и IV-IV, проходящим через середины стыков. В этих местах по условиям симметрии возможно установить равные нулю тепловые потоки, перпендикулярные этим осям. Таким образом, для расчета выделяют четверть панели, схема которой представлена на рис. 8.б. Там же показаны условия теплообмена на границах: с внутренней поверхности ограждения здания температура воздуха t в=20°С и коэффициент теплоотдачи aв=8,7 Вт/(м2·°С), значения величин с наружной поверхности соответственно равны t н=-20°С и aн=23 Вт/(м2·°С).

На рис. 9 приведен чертеж расчленения исследуемой области на 4046 неравномерных элементарных прямоугольных параллелепипедов - 17 интервалов по оси х, 17 интервалов по оси у и 14 интервалов по оси z. Расчленение осуществлялось параллельными плоскостями, перпендикулярными координатным плоскостям и отстоящим одна от другой на неравномерные интервалы. Причем плоскости раздела участков с различной теплопроводностью должны совпадать с плоскостями разбивки. При этом участки, содержащие ребра, были расчленены на четыре сечения в направлении каждой из осей. Величины теплопроводности материалов были назначены как для изотропных материалов, т.е. lх=lу=lz и были равны для железобетона 2,04 Вт/(м·°С), для утеплителя из минеральной ваты 0,06 Вт/(м·°С).

На рис. 10 приведена принятая разбивка исследуемой области на элементарные параллелепипеды в условных координатах, т.е. когда все интервалы между параллельными сторонами заданы одинаковыми. Для уменьшения ошибок при кодировании на рис. 11 в условных координатах представлены порознь в виде элементарных параллелепипедов отдельные участки исследуемой области с различной теплопроводностью. Там же для каждого участка в условных координатах подписаны координаты вершин, ближайших к началу осей координат и числа интервалов в участке в направлении осей координат.

В табл. 2 приведен полный комплект исходных данных к рассматриваемому примеру. Каждая строка содержит до 80 символов, включая пробел. Числа отделены одно от другого двумя и более пробелами. Предназначенные для пробивки данные приведены справа от вертикальной линии. Слева от нее помещены пояснения.

Рис. 10. Разбиение исследуемой области на элементарные параллелепипеды (в условных координатах)

Рис. 11. Кодирование элементарных параллелепипедов (в условных координатах)

Таблица 2

Комплект исходных данных к примеру 2

(N0) 200            
(BUF) 17 17 14 7 6 20000 5003
(DX) 4X0.006  

9X0.1472222

4X0.0125  
(DY) 4X0.006  

9X0.1472222

4X0.0125  
(DZ) 4X0.0125  

6X0.0125

4X0.0125  
(CORD1) 1 1 1 1 17 17 4
  2 5 5 5 9 9 6
  3 1 1 11 17 17 4
  4 14 1 5 4 17 6
  5 1 1 5 4 17 6
  6 5 14 5 9 4 6
(XLAM) 2.04 0.06 5X2.04        
(YLAM) 2.04 0.06 5X2.04        
(XLAM) 2.04 0.06 5X2.04        
(Q) 7X0.0            
(CORD2) 1 18 1 1 0 17 14
  2 1 18 1 17 0 14
  3 1 1 1 0 17 14
  4 1 1 1 17 0 14
  5 1 1 1 17

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow