Философия в СССР 6 страница

Исследования по динамике технологических машин (в т. ч. сельскохозяйственных) были начаты В. П. Горячкиным в начале 20 в., в дальнейшем (30—60-е гг.) продолжены И. И. Артоболевским, А. П. Малышевым и др. Ими были изучены вопросы уравновешивания сельскохозяйственных машин, режимы их движения и энергетический баланс, а также решены многие задачи динамики машинных агрегатов. В конце 60-х гг. исследованы вопросы колебаний в машинах, особенно при высоких скоростях и нагрузках (Ф. М. Диментберг, К. В. Фролов).

В 60-е гг. расширились исследования по теории, методам расчёта, проектирования и эксплуатации машин-автоматов (С. И. Артоболевский, И. И. Капустин, Г. А. Шаумян). Проведена их классификация по признакам, связанным с числом потоков информации и путями их использования; методы теории машин-автоматов связаны с общими методами теории автоматического управления. Для обширного класса автоматов, оснащенных цифровыми системами управления, А. Е. Кобринским созданы программы их работы, методы и средства обработки исходной и дополнит. текущей информации, разработаны вопросы расчёта и проектирования самонастраивающихся систем. С 50-х гг. решаются задачи синтеза автоматов, имеющих оптимальные параметры, с помощью ЭВМ (С. А. Черкудинов и др.). В 70-х гг. ведутся работы по системам машин автоматического действия, роботам-манипуляторам, шагающим машинам, динамике машин с несколькими степенями свободы, машинам с переменной массой звеньев, вибрационного действия (И. И. Артоболевский, А. Е. Кобринский, А. П. Бессонов и др.).

Ведущими институтами в области теории машин и механизмов являются Государственный НИИ машиноведения, Институт геотехнической механики (УССР), Грузинский политехнический институт, Институт механики машин и полимерных материалов (Грузинская ССР), Каунасский политехнический институт, Ленинградский оптико-механический институт, Ленинградский институт инженеров железнодорожного транспорта, Челябинский политехнический институт и др. Координацию работ осуществляют Научные советы по теории машин и систем машин и по теории и принципам устройства роботов и манипуляторов. Советские учёные участвуют в Международных конгрессах по теории машин и механизмов. Президентом Международной федерации по теории машин и механизмов в 1969—75 был И. И. Артоболевский. См. также Машин и механизмов теория, Динамика машин и механизмов, Кинематика механизмов.

Теория расчёта машин. Русские учёные и инженеры, работавшие в 19 — начале 20 вв., значительно обогатили теорию и практику расчёта и конструирования машин. Например, Н. Е. Жуковским исследована работа упругого ремня на шкивах, рассмотрено распределение сил между витками резьбы, им же совместно с

С. А. Чаплыгиным решена одна из важнейших гидродинамических задач в приложении к подшипникам скольжения. Быстро развивалась теория расчёта машин после Октябрьской революции 1917. В этой области в 10—20-х гг. работали учёные МВТУ (А. И. Сидоров, П. К. Худяков), многих других вузов и научно-исследовательских организаций. В 30—40-х гг. созданы методы расчётов валов и осей на выносливость, учитывающие переменность режима работы, статические и усталостные характеристики материалов, концентрацию напряжений, масштабный фактор, упрочнение поверхности (С. В. Серенсен). В начале 40-х гг. А. И. Петрусевичем, В. Н. Кудрявцевым и др. разработаны теория и принципы расчёта эвольвентных зубчатых зацеплений, основные теоретические положения для расчёта цилиндрических передач внешнего и внутреннего зацепления, конических, гипоидных и червячных передач. В 50-е гг. М. Л. Новиковым было предложено кругловинтовое зацепление. В инженерной практике с 60-х гг. применяются теоретические расчёты динамических нагрузок, учитывающие точность изготовления передач, характер нагружения и другие параметры (Государственный НИИ машиноведения). В 40—50-е гг. было положено начало работам по контактно-гидродинамической теории смазки. В частности, решена изотермическая контактно-гидродинамическая задача для линейного контакта. В 30—50-е гг. разработаны основы теории и расчёта ремённых передач на тяговую способность, бесступенчатых передач (В. Н. Беляев, Д. Н. Решетов). В 40—50-е гг. получила дальнейшее развитие теория расчёта соединений: исследованы прочность элементов резьбовых соединений при статических и циклических нагружениях (И. А. Биргер). В 50—60-е гг. созданы гидроприводы на мощность 100—150 квт. Значит. развитие в 40—70-е гг. получили теория и расчёт пружин и упругих звеньев (Е. П. Попов, С. Д. Пономарев). В 70-х гг. создаются уточнённые методы расчёта гидродинамических, гидростатических, газовых опор скольжения, тормозов (Государственный НИИ машиноведения, МВТУ), исследуется износ зубчатых колёс методом меченых атомов (Рижский политехнический институт). Изучается несущая способность масляных слоев между деталями машин, катящимися со скольжением (Государственный НИИ машиноведения, Киевский институт гражданской авиации, Одесский политехнический институт). Крупные работы ведутся также в Московском станкоинструментальном институте, Экспериментальном НИИ металлорежущих станков, Центральный НИИ технологии машиностроения, ленинградских политехническом, механическом, кораблестроительном и других институтах. См. также Детали машин.

Проблемы прочности. Некоторые важные проблемы теории прочности были исследованы русскими учёными в дореволюционный период: Н. Е. Жуковским (расчёт распределения усилий в резьбовых соединениях), А. Н. Крыловым (действие силовых импульсов на упругие системы), Н. Г. Бубновым (строительная механика тонкостенных конструкций), С. П. Тимошенко (прикладная теория упругости), В. Л. Кирпичёвым, М. В. Воропаевым (усталость конструкционных материалов) и др.

После 1917 развёртываются исследования проблем прочности на базе вновь организованных институтов — Физико-технический в Ленинграде (критерии хрупкого разрушения материалов, остаточные напряжения и измерения деформаций), Института технической механики АН УССР в Киеве (усталость и динамическая прочность механических конструкций), Центрального аэрогидродинамического института (прочность высоконагруженных конструкций) и др.

В 30-е гг. в расчётах на прочность стали применять хорошо разработанные методы строительной механики, позволяющие определить статические усилия в упругих системах машин, узлов и конструкций.

Большую роль в создании методов определения полей напряжений сыграли исследования П. Ф. Попковича, Г. В. Колосова и Н. И. Мусхелишвили, явившиеся основой решения важнейших проблем предельного состояния и механики разрушения. В частности, использование конформного отображения позволило решить ряд новых задач о концентрации напряжений около отверстий и в прессовых соединениях, а также плоских и объёмных задач при расчёте элементов машин.

Благодаря работам Н. С. Стрелецкого, А. А. Гвоздева и др. (30-е гг.), С. Д. Пономарева (50—60-е гг.) и др. широкое распространение получил метод расчёта прочности по предельным нагрузкам на основе строит. механики с учётом возможных полей скоростей и допустимых полей напряжений. В дальнейшем важный вклад в исследование предельного состояния применительно к задачам прочности внесли В. В. Соколовский, А. А. Ильюшин (40-е гг.), Ю. Н. Работнов (50-е гг.), Л. М. Качанов, Н. Н. Малинин (50—60-е гг.) и др. В частности, исследования Работнова оказали большое влияние на дальнейшее развитие прикладных методов расчёта напряжённых состояний и прочности при неупругих деформациях. В 50—60-е гг. широкое применение получили методы исследования полей деформаций и напряжений (Н. И. Пригоровский и др.), тензометрии (М. Л. Дайчик, Г. Х. Хуршудов) и др. Усовершенствование метода конечных разностей и развитие метода конечных элементов позволили разработать схему решения аналогичных задач не только в упругой, но и в пластической области, в том числе при ползучести (Д. В. Вайнберг, А. Г. Угодчиков и др.). Реализация расчётов по этим схемам особенно эффективна с применением ЭВМ.

Выполнены значительные работы по механическим закономерностям хрупкого разрушения (А. Ф. Иоффе, 20-е гг.; Н. Н. Давиденков и др., 30-е гг.; Я. Б. Фридман, Б. А. Дроздовский, 50—60-е гг., и др.).

В области усталостной прочности были проведены обширные экспериментальные работы и созданы практические способы расчёта на прочность при циклически изменяющихся напряжениях. Важное значение в этой области имели построение стохастических моделей процесса усталости (Н. Н. Афанасьев, 40-е гг., В. В. Болотин и др., 60-е гг.), разработка методов расчёта на прочность (С. В. Серенсен, В. П. Когаев и др., 50—60-е гг.) и изучение проблемы малоциклового разрушения (в 40-е гг.— Н. И. Марин, в последующие годы — Серенсен, В. В. Новожилов и др.). Для проверки циклического деформирования и критериев разрушения разработаны экспериментальные методы исследования полей деформаций с помощью сеток (Н. А. Махутов), оптически активных покрытий (Р. М. Шнейдерович и В. В. Ларионов), муара (Шнейдерович и О. А. Левин). Уточнены критерии усталостного разрушения в связи с типом напряжённого состояния. Возможность значит. увеличения прочности в местах концентрации напряжений поверхностным наклёпом и термической обработкой показана в 40—50-х гг. Н. П. Щаповым, И. В. Кудрявцевым и др.

Систематические исследования проблем термопрочности проводились И. А. Одингом (40—60-е гг.), Серенсеном (с 50-х гг.), Г. С. Писаренко (50—60-е гг.) и их учениками. Они были посвящены выяснению сложных изменений механической и термической прочности в широком диапазоне режимов нагружений и нагрева. Прочностью при неизотермическом нагружений, особенно важной для элементов конструкций, в которых возникают значит. температурные напряжения, занимались в 50—60-е гг. Ю. И. Лихачев, Ю. Ф. Баландин и др.

Увеличение скоростей машин, интенсификация технологических процессов, а также успешное применение импульсных методов в технологии формоизменения и упрочнения обусловили разработку волновых упругопластических задач, решение которых базируется на основополагающих работах Л. А. Галина, Х. А. Рахматулина и др.

В 70-х гг. наука о прочности развивается в следующих направлениях: разработка вопросов механики деформирования и разрушения как основы расчётов на прочность при экстремальных условиях нагрева и нагружения, исследование кинетики деформированных состояний и разрушения для определения прочности и долговечности в условиях стационарной и стохастической нагруженности, анализ истории нагружения и накопления повреждений для оценки остаточной прочности и ресурса.

Ведущие институты: Государственный НИИ машиноведения, Институт проблем механики АН СССР, Институт проблем прочности АН УССР, Институт электросварки АН УССР. Координацию работ осуществляет Научный совет АН СССР по проблемам прочности и пластичности.

Проблемы точности и износостойкости. Технический прогресс в машиностроении тесно связан с решением проблем повышения точности изготовления деталей машин и обеспечения их износостойкости. Отдельные исследования по этим проблемам проводились ещё в дореволюционной России. Например, известны работы Н. П. Петрова, заложившего основы гидродинамической теории трения. Планомерно исследования в области точности стали осуществляться лишь после Октябрьской революции 1917. Декретом СНК (1918) была узаконена метрическая система мер, а затем приняты государственные эталоны и проведены другие мероприятия в области метрологии. В 20—30-х гг. созданы стандарты на допуски для типовых деталей машин (А. Д. Гатцук, М. А. Саверин). Важную роль в разработке государственных стандартов на допуски изделий и калибров для их контроля сыграло организованное в 1935 Научно-исследовательское бюро взаимозаменяемости под руководством И. Е. Городецкого; оно стало ведущим в области создания средств измерения и контрольных автоматов. В 30-е гг. развернулись работы по взаимозаменяемости, стандартизации и технике измерений в научно-исследовательских организациях различных отраслей промышленности. В 30—40-х гг. большое значение имели теоретические исследования Бруевича (точность механизмов с учётом ошибки размеров и расположения звеньев), Б. С. Балакшина (теория размерных цепей), Н. А. Бородачёва (основы расчёта допусков кинематических цепей), Н. А. Калашникова (точность зубчатых колёс); при этом вопросы точности стали изучаться в связи с технологическими процессами изготовления изделий (работы А. П. Соколовского, В. М. Кована и др.). Итогом этих работ была общая теория точности машин и приборов (40—50-е гг., Государственного НИИ машиноведения), выводы которой в 60— 70-е гг. применялись при проектировании машин, приборов и технологических процессов, а также в автоматизации контроля в промышленности и управлении технологическими процессами.

В 70-х гг. внимание учёных сосредоточено на оптимизации точностных задач с помощью ЭВМ при конструировании, а также на комплексном изучении проблем точности и надёжности. Ведущими организациями в области взаимозаменяемости и точности являются Бюро взаимозаменяемости в металлообрабатывающей промышленности, Государственный НИИ машиноведения и Центральный НИИ технологии машиностроения. Значительные работы ведутся также в Киевском, Рижском, Каунасском политехнических институтах, Вильнюсском филиале Экспериментальном НИИ металлорежущих станков и др. Советские учёные активно участвуют в работе Международной организации по стандартизации (ISO), международных конференциях по измерительной технике и разработке единой системы допусков и посадок, унифицированных стандартов стран — членов СЭВ.

Теория трения и износа твёрдых тел наиболее интенсивно развивалась с 30-х гг. в связи с ростом машиностроения. Потребовались износостойкие фрикционные материалы и новые виды смазок. В 30—40-х гг. А. К. Зайцевым и Д. В. Конвисаровым систематизированы знания о трении и износе в машинах и сделаны попытки создания единого учения о трении и износе. В дальнейшем исследованы природа поверхностных сил (Б. В. Дерягин), механизм разрушения поверхностных слоев (П. А. Ребиндер), подшипниковые сплавы и абразивный износ (М. М. Хрущев). Предложенные в 50-х гг. молекулярно-механическая теория трения и усталостная теория износа (И. В. Крагельский) являются ныне базисом для инженерного расчёта машин на износ, работающих в условиях сухого и граничного трения, для подбора и создания материалов пар трения. Значит. вклад в теорию трения и износа в 40—50-х гг. внесли Б. Д. Грозин и Б. И. Костецкий (износ металлов), А. П. Семенов (схватывание металлов), С. В. Пинегин (сопротивление качению), А. К. Дьячков и М. В. Коровчинский (гидродинамическая смазка), А.И. Петрусевич (контактно-гидродинамическая смазка), Г. В. Виноградов и Р. М. Матвеевский (эффективность действия смазочных материалов при тяжёлых режимах трения), А. В. Чичинадзе (физическое моделирование фрикционного контакта) и др. В начале 60-х гг. мощным импульсом развития науки явилась необходимость создания новых материалов и узлов трения для машин разного назначения. Были созданы самосмазывающиеся материалы на полимерной основе (В. В. Коршак, В. А. Белый и др.), а также металлофторопластовые материалы (Государственный НИИ машиноведения). В 60—70-х гг. разработаны мероприятия по борьбе с задиром поверхностей трения (Н. Л. Голего), исследовано трение полимеров (А. К. Погосян), проводилось дальнейшее изучение процесса трения скольжения (Г. А. Свирский).

В 70-х гг. создаются смазки и присадки к ним, препятствующие задиру пар трения и обеспечивающие автокомпенсацию износа (Всесоюзный научно-исследовательский и проектный институт нефтеперерабатывающей и нефтехимической промышленности, Институт нефтехимического синтеза им. А. В. Топчиева), полимерные материалы для узлов трения (Институт элементоорганических соединений АН СССР, Институт металлополимерных систем АН БССР и др.), развиваются теоретические основы контактного взаимодействия твёрдых тел с учётом среды (Институт проблем механики АН СССР), применяются к разным деталям расчётные методы прогнозирования износа (Государственный НИИ машиноведения), создаются стандартные методы оценки фрикционных материалов (Всесоюзный НИИ по нормализации в машиностроении). Важные работы по трению и износу выполняются по договорам между СССР и Великобританией, Францией, ГДР. СССР — член Международного совета по трибонике «Eurotrib» [с 1973 (год основания) вице-президент И. В. Крагельский].

Материаловедение. Основоположниками современного металловедения явились П. П. Аносов и Д. К. Чернов. В предреволюционные годы на базе вузов и некоторых заводских лабораторий сложились центры металловедческой науки. Особенно интенсивно она развивалась после Октябрьской революции 1917; была создана сеть НИИ, заводских лабораторий и высших технических учебных заведений, выросли крупные школы металловедения.

В 20—30-х гг. Н. С. Курнаков и его школа разработали учение о физико-химическом анализе сплавов и установили важные закономерности зависимости свойств от состава. Исследования в области теории металлургических процессов и металловедения, послужившие основанием для разработки высококачественных сталей, были проведены школой А. А. Байкова. Изучение сплавов на основе цветных металлов, разработка подшипниковых сплавов были содержанием работ школы А. М. Бочвара. Труды С. С. Штейнберга, продолженные его учениками (В. Д. Садовский и др.), посвящены кинетике превращений аустенита. Новые типы сталей и различные технологические процессы термической обработки разработаны Н. А. Минкевичем и Н. Т. Гудцовым. А. А. Бочвар установил механизм эвтектической кристаллизации, открыл явление сверх пластичности, используемое при разработке новых технологических процессов металлообработки, заложил основы теории литейных свойств сплавов. Основоположником исследований по применению токов высокой частоты в процессах термической обработки был В. П. Вологдин (30-е гг.).

Важную роль в развитии металловедения начиная с 20-х гг. сыграло применение методов рентгеноструктурного анализа, позволившее определить кристаллическую структуру различных фаз, её изменения при фазовых превращениях, термической обработке и деформации. В этой области важнейшее значение имели работы С. Т. Конобеевского, Г. В. Курдюмова, Н. В. Агеева и др. Курдюмов, в частности, исследовал кристаллическую структуру мартенсита и изменения структуры закалённой стали при отпуске, открыл явление термоупругого равновесия и «упругие» кристаллы мартенсита (что является теоретической основой разработки сплавов с т. н. памятью формы).

В послевоенные годы требования к металлическим материалам резко возросли и стали более разнообразными в связи с необходимостью достижения высоких эксплуатац. параметров, надёжности и долговечности в широком диапазоне температур, нагрузок, скоростей нагружения, при воздействии различных агрессивных сред и физических полей. Существенными явились и запросы техники к экономичности материалов, их технологичности (свариваемость, способность к формоизменению, малые изменения размеров при термообработке, простота термической обработки). Появилась необходимость в получении материалов со сложным комплексом свойств (высокая прочность с достаточным сопротивлением хрупкому разрушению и хладноломкости; немагнитность; специфические физические свойства). Всё это обусловило быстрое развитие теоретического металловедения, изыскание новых металлических материалов и методов их производства.

В 60—70-х гг. решены задачи обеспечения потребностей народного хозяйства в металлических материалах. Разработаны новые стали: конструкционные с повышенной прочностью и пластичностью, сопротивлением циклическим нагрузкам, коррозии под напряжением; низколегированные строительные с хорошей свариваемостью и повышенными механическими характеристиками для мостостроения, газо- и нефтепроводов, судостроения, промышленного и гражданского строительства и, в частности, для использования в условиях Севера; жаропрочные для реактивной авиации и энергетики; коррозионно-стойкие для химической промышленности и атомной энергетики; экономичные быстрорежущие и инструментальные повышенной производительности; электротехнические с малыми удельными потерями, в том числе холоднокатаные и текстурованные; нестареющие для глубокой вытяжки, криогенные и др.

Значит. развитие получило производство лёгких сплавов повышенной прочности (алюминиевых, магниевых, титановых, бериллиевых), особенно для конструкций с высокими требованиями к весовым показателям (А. Ф. Белов, А. Т. Туманов и др.), а также производство сплавов со специальными физическими свойствами (магнитно-мягкие, магнитно-твёрдые, с высоким электросопротивлением, с заданным коэффициентом расширения, с высокими упругими свойствами, сверхпроводящие, магнитострикционные, термомагнитные и др.) для электронной, электровакуумной техники и приборостроения (А. С. Займовский и др.). Важное значение имели проведённые в 60—70-х гг. исследования процесса термомеханической обработки металлов.

Достижения в области физики твёрдого тела, физической химии и металловедения позволили создать принципиально новый класс материалов — т. н. композиционные материалы. Используя полезные свойства составляющих композиций (металлов, сплавов, керамики, карбидов, боридов, полимеров и др.), можно получить композиционные материалы с заданным комплексом специальных свойств: высокопрочные, жаропрочные, высокомодульные, радиопоглощающие, радиопрозрачные, диэлектрические, магнитные и др.

Обширный комплекс теоретических и практических работ проведён в СССР по созданию и применению в машиностроении пластмасс и др. синтетических материалов (резин, химических волокон, клеев, лаков, красок). Созданы высокоэффективные пластмассы, обладающие ценными свойствами (физико-механическими, химическими, диэлектрическими, оптическими и др.). На многих машиностроительных заводах организованы базовые цехи по производству пластмассовых деталей и узлов машин. Пластмассы заменяют тяжёлые цветные металлы, нержавеющую сталь, ценные сорта древесины, используются для улучшения качества машин и оборудования, снижения их массы и стоимости, повышения долговечности, надёжности, производительности.

А. А. Пархоменко, О. А. Владимиров, А. И. Петрусевич, А. Т. Григорян, Р. М. Матвеевский, Р. И. Энтин.

Технология производства машин. Литьё. В дореволюционной России литьё осуществлялось небольшим числом заводов и цехов с примитивным оборудованием. Ассортимент продукции был крайне ограничен: главным образом отливки для ремонтных нужд, изложницы, прокатные валки, вооружение и боеприпасы. В 19 в. появились работы П. П. Аносова, Н. В. Калакуцкого и А. С. Лаврова по процессам кристаллизации отливок, возникновению ликвации и внутренних напряжений в них. Переворот в области чугунного и стального литья был произведён открытием критических точек металлов в конце 19 в. Быстро развивалось литейное производство после Октябрьской революции 1917. Теоретической базой при проектировании, механизации и специализации литейного производства были работы Н. Н. Рубцова, Л. И. Фанталова, Н. П. и П. Н. Аксеновых. Основы учения о формовочных материалах созданы П. П. Бергом в 30-х гг. В 30—50-х гг. Н. Г. Гиршович, Б. С. Мильман, Д. П. Иванов и др. разработали процессы получения высококачественных чугунных, а в 30—60-х гг. Ю. А. Нехендзи, А. А. Рыжиков и др. — стальных отливок. В 30—40-х гг. А. А. Бочвар и А. Г. Спасский внедрили в производство процесс изготовления высококачественных отливок из лёгких сплавов, кристаллизующихся в условиях повышенного давления. Исследования по теории и практике плавки чугуна в вагранках были выполнены в 40—50-х гг. Л. М. Мариенбахом, Б. А. Носковым, Л. И. Леви и др. В 50—60-х гг. Б. Б. Гуляевым, Г. Ф. Баландиным и др. изучены и обоснованы многие процессы кристаллизации и деформирования отливок.

В 70-х гг. получили промышленное применение процессы плавки в усовершенствованных вагранках и электрических печах. Для улучшения свойств отливок осуществляется легирование и модифицирование сплавов. Высокая точность отливок достигается применением литья в кокиль, литья по выплавляемым моделям, использованием разовых литейных форм, изготовленных на автоматах под высоким давлением или с применением специальных, твердеющих в технологической оснастке формовочных и стержневых смесей. Используются вакуумная плавка, различные виды рафинирования расплавов и др., а также полуавтоматическое и автоматическое оборудование, облегчающее труд рабочих и обеспечивающее охрану окружающей среды от воздействия производств. отходов. Автоматизируется управление технологическими процессами и производством в целом.

Ведущие институты по разработке литейных технологии и машиностроения: Всесоюзный НИИ литейного машиностроения, литейной технологии и автоматизации литейного производства и институт проблем литья АН УССР.

Советские учёные являются членами Международной ассоциации литейщиков, участвуют в международных конгрессах (40-й конгресс проходил в Москве в 1973). См. также Литейное производство.

Обработка металлов давлением (ковка, штамповка, прессование) [Развитие техники и технологии прокатного производства рассмотрено в разделе Металлургическая наука, техника и технология]. До 1917 кузнечные и прессовые цехи выпускали ограниченную номенклатуру деталей. Уже в годы 1-й пятилетки (1929—32) кузнечно-штамповочное и прессовое производство получило заметное развитие, особенно в новых отраслях машиностроения (энергетическом, тракторном, автомобильном, транспортном). Кузнечные цехи начали производить поковки и штамповки из стали многих марок, алюминиевых и магниевых сплавов и др. Были созданы первые специализированные прессовые цехи лёгких сплавов. Технология ковки и штамповки усовершенствовалась в 30—40-е гг.: расширилась номенклатура поковок, повысилась точность штамповки, форма поковок приблизилась к готовым деталям. Начала применяться горячая штамповка в многоручьевых штампах. Увеличилась толщина листового металла для ковки и горячей штамповки крупных пустотелых деталей — барабанов, котлов и др. Рост выпуска тонкого холоднокатаного листа повлиял на совершенствование холодной листовой штамповки крупных автомобильных, судовых, вагонных и др. деталей. Увеличение размеров кованых деталей привело к повышению верхнего предела массы кузнечных слитков до 200—250 т. В 50-е гг. положит. результаты дало применение электрошлаковой сварки при изготовлении ковано-сварных крупногабаритных изделий.

Развитие атомной, авиационной и ракетной техники, приборостроения, повышение рабочих параметров машин (усилий, напряжений, скоростей, давлений, температур) потребовало разработки новых технологических процессов для высокопрочных и жаропрочных сплавов, новых термомеханических режимов обработки тугоплавких металлов (Mo, Nb, W, Cr и др.). Значит. развитие получил процесс прессования (выдавливания) металлов. Было освоено прессование профилей и труб переменного сечения, пустотелых профилей и панелей из алюминиевых сплавов, труб и профилей (в т. ч. переменного сечения и пустотелых) из титановых сплавов, прутков, профилей и труб из высокопрочных сталей, а также из жаропрочных сплавов на никелевой основе и тугоплавких сплавов. Помимо внедрения гидропрессовой техники, в том числе мощных штамповочных прессов с усилием 30—75 тыс. тс и горизонтальных гидравлических прессов для прессования металлов с усилием 12—20 тыс. тс, в 60—70-е гг. распространились принципиально новые технологические процессы: импульсное и взрывное прессование, беспрессовое изготовление деталей в холодном состоянии из жаропрочных сталей, титана, алюминиевых сплавов и др. Созданы установки со взрывом в воде, в вакууме, электроразрядные установки в воде, взрывные со смесью газов, импульсные установки с сильными магнитными полями. Разработано гидростатическое прессование металлов, а также высокотемпературное гидростатическое формование порошков труднодеформируемых металлов и сплавов (газостаты). Создано уникальное прессовое оборудование для получения синтетических алмазов. Осуществляется комплексная механизация и автоматизация технологических процессов ковки и штамповки (автоматические установки по выдавливанию сплошных и трубчатых деталей, автоматические линии по высадке болтов, заклёпок, по штамповке колец шарикоподшипников, вагонных колёс, звеньев гусениц и т. д.).

В разработке теоретических и технологическим проблем ковки, штамповки, прессования участвовали С. И. Губкин, И. М. Павлов, Е. П. Унксов, А. И. Целиков, И. А. Перлин, Б. В. Розанов, А. И. Зимин, П. С. Истомин и др. Исследования этих процессов ведутся в Центральном НИИ технологии машиностроения, Всесоюзном научно-исследовательском и проектно-конструкторском институте металлургического машиностроения, Всесоюзном институте лёгких сплавов и др.

Сварка. До конца 19 в. в России использовали только два способа сварки металлов — литейный и кузнечный. Основой принципиально новых методов соединения металлов явилось открытие в 1802 В. В. Петровым дугового разряда. В 1882 Н. Н. Бенардос и в 1890 Н. Г. Славянов предложили первые практически пригодные способы сварки с использованием электрической дуги. К 1911 распространилась также газовая сварка.

Научные исследования в области сварки развернулись после Октябрьской социалистической революции. В 1924 выпущены первые сварочные машины, спроектированные В. П. Никитиным. В 1929 для концентрации научно-исследовательских и конструкторских работ по сварке и резке металлов был создан Автогенный комитет при ВСНХ, а в 1931 — Всесоюзный автогенный трест. В годы 1-й пятилетки (1929—32) электросварку применяли не только для ремонта оборудования, но и для производства новых конструкций в строит. промышленности, транспортном и энергетическом машиностроении, судостроении и др. отраслях. Многие заводы использовали её в качестве основного технологического процесса при производстве котлов, вагонных конструкций, железнодорожных цистерн, цельносварных судов, трубопроводов и т. п. Научно-исследовательские работы велись в Центральном институте железнодорожного транспорта, Центральном НИИ технологии и машиностроения (ЦНИИТМАШ), НИИсудпроме, заводских лабораториях. Начались исследования по изучению распространения тепла при сварке (Н. Н. Рыкалин), прочности сварных конструкций и механизма образования напряжений от сварки (В. П. Вологдин, Г. А. Николаев). В 30-е гг. в НИИ и на заводах (особенно в Киеве под рук. Е. О. Патона) начались работы, в результате которых был создан способ автоматической сварки открытой дугой, а затем (начало 40-х гг.) способ автоматической сварки под флюсом с использованием оригинальной отечеств. аппаратуры. Эти методы позволили ликвидировать тяжёлый ручной труд, перевести сварку на индустриальную основу.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: