Количества движения

Согласно закону изменения количества движения изменение вектора количества движения постоянной массы m (находящейся в объеме V в момент времени t) равно сумме внешних сил, действующих на рассматриваемую массу:

. (3.3)

Внешние силы, способные изменить количество движения данной массы жидкости, разделяют на объемные и поверхностные силы.

Объемные силы – силы, величина которых пропорциональна массе жидкости в выделенном объеме. В данном случае имеет место сила тяжести, равная , где – главный вектор массовых сил, отнесенных к единице массы, т. е. ускорение от массовых сил (наиболее простое представление – ускорение силы тяжести).

Поверхностные силы – силы, величина которых пропорциональна площади поверхности, охватывающей выделенный объем. К ним относятся силы от нормальных и касательных напряжений, действующих на поверхность частицы. Считая жидкость идеальной, ограничимся рассмотрением только силы от аэродинамического давления, которая направлена по внутренней нормали. Тогда для внешней нормали коэффициент давления , и сила, действующая на всю поверхность, равна .

Если есть ускорение элемента dV, то сила инерции (вектор изменения количества движения) равна

.

Подставляя все в уравнение (3.3), получаем уравнение движения идеальной жидкости в интегральной форме:

.

Применив формулу Остроградского–Гаусса , можем объединить все три интеграла:

. (3.4)

В силу произвольности выделенного объема получаем, чтоподынтегральное выражение равно нулю в каждой точке газового потока в любой момент времени. Таким образом, можно прийти к уравнению движения идеального газа в векторной форме – уравнению движения Эйлера:

. (3.5)

Запишем уравнение (3.5) в проекциях на оси декартовой системы координат. Так как , , , то в проекциях на оси координат уравнения Эйлера запишутся в виде

. (3.6)

Уравнения (3.6) применимы для исследования движения сжимаемой и несжимаемой жидкости. Каждый член этой системы уравнений представляет собой ускорение. Можно сказать, что при движении идеальной жидкости суммарное ускорение складывается из ускорения от массовых сил и ускорения от сил давления.

Преобразуем левые части уравнений (3.6) с учетом формулы (2.3). При этом вспомним, что для проекции ускорения на ось ОХ

.

Применив аналогичную запись для других проекций, получим дифференциальные уравнения Эйлера в развернутом виде:

(3.7)

При интегрировании дифференциальных уравнений движения газа получим решения, содержащие произвольные функции и произвольные постоянные. Для их определения необходимы дополнительные условия: начальные и граничные.

При начальных условиях задается поле скоростей в начальный для данной задачи момент времени, т. е. при t = 0:

Очевидно, что начальные условия необходимы при решении задач неустановившегося движения газа.

Граничные условия – это условия на некоторых границах течения, в качестве которых может выступать поверхность обтекаемого тела, невозмущенный набегающий поток, поверхности раздела потоков и др. Граничные условия подразделяют на динамические и кинематические.

Динамические условия относятся к силам. Например, на свободной поверхности имеет место равенство давления внешней среды и давления на обтекаемой поверхности.

Кинематические условия относятся к скоростям. Например, на поверхности обтекаемого тела должно выполняться условие безотрывности обтекания или условие непротекания , в силу которых вектор скорости направлен по касательной к поверхности.

Если рассматривается движение вязкой жидкости, то в уравнениях движения необходимо учесть внутреннее трение в жидкости через силу трения:

где – вектор силы трения, действующей на единичную площадку,положение которой определяется в пространстве нормалью . Согласно формуле Остроградского–Гаусса

.

Тогда уравнение (3.4) примет вид

.

После интегрирования и преобразований уравнение движения реальной жидкости в векторной форме запишется следующим образом:

. (3.8)


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: