Определение производной, дифференциала

1. Определение. Производной первого порядка от функции по аргументу xназывается предел отношения приращения функции к приращению аргумента при условии, что , т.е. или

2. , где a- угол наклона касательной к

- уравнение касательной, проведённой в т.

3. - скорость изменения функции в т. x0.

  1. Отыскание производной называется дифференцированием.
  2. - дифференциал функции равен произведению производной функции на дифференциал аргумента.

Геометрически dy представляет собой приращение ординаты касательной к графику функции в заданной точке.

6. - дифференциал аргумента равен приращению аргумента.

- дифференциал функции и приращение функции равны лишь приближённо.

7. - формуладляприближённыхвычислений.

Таблица дифференциалов и производных основных элементарных функций.

Элементарные функции дифференциал производная
     
1. Степенная функция
2. Линейная функция a,b-постоянные y=x.
3.Тригонометрич. функции y=sin x y=cos x y=tg x y=ctg x    
4. Показательная функция , a -число  
5. Логарифмическая функция y=ln x
6. Иррациональная функция
     
7. Обратно тригонометричес- кие функции y= arcsin x y=arcos x y= arctg x y=arcctg x    
8. y=c c-const d(c)=0·dx

Основные правила дифференцирования.

Пусть С- постоянное, и - функции имеющие производные.

Тогда:

1)

2)

3)

4)

5)

6)

7) если , , т.е , где функции f(U) и U(x) имеют производные, то - правило дифференцирования сложной функции.

5.2 Примеры решения задач.

Задача 1. Найти производные или следующих функций:

а)

б)

в)

г)

Решение:

а) Пользуясь правилом логарифмиро­вания корня и дроби, преобразуем правую часть:

Применяя правила и формулы дифференцирования, получим:

б) Предварительно прологарифмируем по основанию е обе части равенства:

Теперь дифференцируем обе части, считая сложной функцией от переменной х:

откуда

в) В данном случае зависимость между аргументом х и функцией у задана уравнением, которое не разре­шено относительно функции у. Чтобы найти производ­ную у', следует дифференцировать по х обе части задан­ного уравнения, считая при этом у функцией от х, а за­тем полученное уравнение решить относительно искомой производной у'. Имеем

Из полученного равенства, связывающего х, у, и у',

находим производную у':

откуда

г) Зависимость между переменными х и у задана па­раметрическими уравнениями. Чтобы найти искомую производную у', находим предварительно дифференци­алы dy и dx и затем берем отношение этих дифферен­циалов

Задача 2. Найти производную второго порядка

а)

б)

Решение: а) Функция у задана в неявном виде. Дифференцируем по х обе части заданного уравнения, считая при этом у функцией от х:

(1)

откуда

Снова дифференцируем по х обе части (1):

(2)

Заменив у' в (2) правой частью (1), получим:

б) Зависимость между переменными xи у задана параметрическими уравнениями. Чтобы найти произ­водную у', находим сперва дифференциалы dy и dx и за­тем берем отношение этих дифференциалов:

Тогда

Производная второго порядка . Следователь­но, чтобы найти у", надо найти дифференциал dy':

Тогда

Задача 3. Найти приближенное значение функции при исходя из ее точного зна­чения при

Решение: Известно, что дифференциал dy функ­ции представляет собой главную часть прира­щения этой функции .Если приращение аргумента мало по абсолютной величине, то приращение при­ближенно равно дифференциалу, т. е. . Так как , а то имеет место при­ближенное равенство:

Пусть , т. е.

Тогда

(1)
или

Приближенное равенство (1) дает возможность найти значение функции при , если известно значение функции и ее производной при Прежде чем воспользоваться приближенным равен­ством (1), находим числовое значение производной f'(x) при х= 6:

или

Применяя (1), получаем

5.3 Вопросы для самопроверки.

1. Сформулировать определение производной.

2. Каков геометрический смысл производной?

3. Как составить уравнение касательной?

4. Каков геометрический и механический смысл производной?

5. Как найти производную неявной функции? Параметрической функции?

6. Функция непрерывна в т. x0. Следует ли отсюда дифференцируемость функции?

7. В чём заключается геометрический смысл дифференциала функции?

8. Записать формулу, используемую в приближённых вычислениях. Найти приближённое значение

Тема 6. Приложения производной к исследованию поведения функции и построению графика и к другим задачам.

Пискунов, гл. V, §1-12, упр 1-134

Данко, ч. I, гл. 3

План исследования функции и построения графика.

1.Найти область определения функции. Решение этого вопроса указывает на те интервалы оси (ОХ), над которыми пройдёт график и на те значения аргумента x, над которыми график не пройдёт, а также в каких точках пройдут вертикальные асимптоты.

2.Исследовать на чётность, нечётность. Решение этого вопроса облегчает построение.

3.Указать промежутки монотонности функции и найти экстремумы её, точки экстремумов. Построить соответствующие точки на координатной плоскости.

4.Указать точки перегиба графика функции и нанести их на координатную плоскость. Указать промежутки выпуклости, вогнутости.

5.Найти уравнения вертикальных и наклонных асимптот, используя условия для существования этих асимптот. Построить эти линии на координатной плоскости.

6.Найти точки пересечения графика функции с осями координат. Нанести их на плоскость.

7.Исследовать поведение функции на концах области определения. Это поможет при построении графика.

8.Можно взять несколько контрольных точек, в случае уточнения поведения графика.

9.Построить график.

Задача 1. Исследовать функцию у = 1п(х2 +10) и построить ее график.

Решение:

1. Определим область существования функции. Квадратный трехчлен, стоящий под знаком ло­гарифма, можно представить так: х2 6x+10=(x-3)2 + 1. Как видно, под знаком логарифма будет положи­тельное число при любом значении аргумента х. Следо­вательно, областью существования данной функции слу­жит вся числовая ось.

2. Исследуем функцию на непрерывность. Функция всюду непрерывна и не имеет точек разрыва.

3. Установим четность и нечетность функции. Так как у(-х)¹у(х) и у(- х)¹ - у(х), то функция не яв­ляется ни четной, ни нечетной.

4. Исследуем функцию на экстремум. Находим пер­вую производную:

Знаменатель х2- 6x+10>0 для любого значения х. Как видно, при х < 3 первая производная отрицательна, а при х > 3 положительна. При х = 3 первая производная меняет свой знак с минуса на плюс. В этой точке функ­ция имеет минимум:

Итак, A(3; 0) - точка минимума. Функция убывает на интервале (- ¥, 3) и возрастает на интервале (3, + ¥).

5. Определим точки перегиба графика функции и интервалы выпуклости и вогнутости кривой. Для этого находим вторую производную:

Разобьем всю числовую ось на три интервала: (- ¥, 2), (2, 4), (4, + ¥). Как видно, в первом и третьем интерва­лах вторая производная отрицательна, а во втором ин­тервале положительна. При x1 = 2 и х2 = 4 вторая произ­водная меняет свой знак. Эти значения аргумента явля­ются абсциссами точек перегиба. Определим ординаты этих точек:

Следовательно, P1 (2; ln 2) и P2(4; ln 2) — точки перегиба графика функции. График является выпуклым в интерва­лах (- ¥, 2) и (4, +¥) и вогнутым в интервале (2, 4).

6. Определим уравнения асимптот графика функции. Для определения уравнения асимптоты y=kx+b вос­пользуемся формулами:

Имеем

Чтобы найти искомый предел, дважды применяем правило Лопиталя:

Итак, кривая не имеет асимптот.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  




Подборка статей по вашей теме: