Основные этапы развития генетики микроорганизмов

 

В 40‑50‑е годы XX в. из общей микробиологии выделилось самостоятельное направление – генетика микроорганизмов – с наиболее важным разделом – генетикой бактерий. Основой исключительно быстрого развития этой области исследований послужили доказательства мутационной природы изменчивости микроорганизмов, обнаружение у них различных форм генетической рекомбинации и роли ДНК в их наследственных свойствах, достоинства микроорганизмов как объектов генетических исследований. Генетика микроорганизмов приобрела особое значение в связи с решением кардинальных проблем молекулярной биологии. Исследования структуры ДНК, ее роли в процессах биосинтеза белка и регуляции внутриклеточных обменных процессов, разработка проблем направленной изменчивости и специфичности мутагенеза ведутся в основном на микроорганизмах.

 

 

Георгий Адамович Надсон. 1867–1940.

 

 

До оформления генетики микроорганизмов в самостоятельную отрасль знания генетики и микробиологи работали разобщенно. Микробиологи были далеки от генетического истолкования наблюдавшихся ими фактов изменчивости и наследственности микробов, а генетики либо вообще не интересовались бактериологией, либо скептически относились к возможности применения генетических принципов к таким примитивно организованным формам жизни, какими им представлялись бактерии.

Первый этап в развитии генетики бактерий составили исследования, экспериментально доказывающие сходство природы и механизмов передачи потомству наследственных признаков у бактерий и высших организмов.

До выделения генетики бактерий в самостоятельную дисциплину существовало несколько точек зрения на популяционную изменчивость бактерий. Согласно одной из них, все изменения, вызванные внешней средой, являются непосредственно адаптивными. Это воззрение основывалось на представлении о наличии у бактерий повышенной врожденной пластичности, позволяющей им адекватно реагировать на разнообразные условия внешней среды. Длительному сохранению в микробиологии этого взгляда способствовал тот факт, что работа с бактериями велась, как правило, на больших популяциях, быстро размножающихся бесполым путем, что затрудняло контроль за изменчивостью отдельных особей. Вследствие этого изменения наследуемых признаков в единичных клетках оставались не обнаруженными до тех пор, пока такие измененные клетки не размножались в достаточно большом количестве, чтобы образовать целую популяцию.

Согласно другой точке зрения, изменчивость бактерий является результатом длительных модификаций, не затрагивающих наследственной основы организма и проявляющихся в течение многих поколений после того, как вызвавший их фактор перестал действовать. Третья точка зрения сводилась к признанию полицикличности в развитии бактерий, проявлением которой служат изменения их признаков. Эти взгляды означали реставрацию идеи полиморфизма, утверждавшей наличие в мире микробов безграничной изменчивости.

Лишь немногие микробиологи склонялись в четвертой точке зрения, согласно которой причиной изменчивости бактерий могут быть спонтанные изменения (мутации) в одной или нескольких клетках, подвергающиеся отбору. Зачатки подобных представлений содержались, например, в работах М. Нейсера (1906) и Р. Массини (1907), описавших факт внезапного наследственного приобретения культурой Escherichia coli свойства активно сбраживать лактозу. Низкая частота и стабильность этого нового признака позволили авторам получить новый штамм и отнести это явление к категории мутаций, полученных Г. де Фризом. Этим же термином воспользовался и М. Бейеринк при объяснении причин происхождения «дочерних» узелков на поверхности бактериальной колонии. В 1912 г. К. Добелл определил мутации у бактерий как стойкие, иногда незначительные изменения, передающиеся по наследству.

В период с 1910 по 1940 г. были описаны различные виды наследственной изменчивости. В 1921 г. французский микробиолог П. де Крюи описал изменение ряда свойств у одной из патогенных бактерий, возникающее, по его мнению, в результате расщепления признаков под влиянием неблагоприятных условий среды. Этот вид изменчивости он назвал диссоциацией. В 1925 г. в Советском Союзе Г.А. Надсон и Г.С. Филиппов впервые получили мутационные (по их терминологии, сальтационные) стойкие изменения признаков у дрожжевых и плесневых грибков, подвергнув их облучению рентгеновыми лучами. Это был первый случай индуцированной мутации, вызванной физическим мутагенным фактором. Первые данные о характере мутаций позволили провести параллель между природой изменчивости у бактерий и высших организмов. Это стало возможным также после того, как были разработаны методы, которые дали возможность отличать изменения отдельной клетки от изменчивости целой популяции.

Причины различий в объяснении фактов изменчивости у микробов носили преимущественно методологический характер. Из‑за отсутствия единой методики эксперимента данные разных авторов оставались несопоставимыми. Трудности в разграничении фенотипа и генотипа приводили зачастую к отрицанию различий между адаптацией и мутацией. Случаи морфологической изменчивости, требующие длительного наблюдения, нередко объясняли наличием сложных циклов развития. Длительное время отсутствовали и единые методы генетического анализа, в частности, принцип отбора мутантов.

Значительное упорядочение представлений о природе изменчивости у микробов было связано с разработкой методов генетического анализа у высших организмов и утверждением представлений о сходстве механизмов изменчивости и наследственности у всех живых организмов.

 

 

Генетика бактерии.

 

В генетике бактерий ситуация сложилась таким образом, что, несмотря на достаточное знакомство ученых с явлением спонтанной ненаправленной изменчивости у бактерий, прошло немало времени, прежде чем теория мутаций получила признание. До 40‑х годов исследованию подвергалась мутабильность различных признаков бактерий. Преимущественным методом было наблюдение фактов изменчивости и их статистическая обработка. Среди признаков, которые использовались для изучения закономерностей изменчивости, учитывались главным образом антигенность, вирулентность и морфологические особенности. С начала 40‑х годов, после признания за мутационной изменчивостью ведущей роли в изменчивости бактерий, характер спонтанных и индуцированных мутаций стали изучать при исследовании таких признаков, как устойчивость к ингибиторам (особенно к антибиотикам), к фагу, потребность в дополнительных факторах роста или дефектность синтеза отдельных ферментов, изменение морфологии клеток или колоний, вирулентные и антигенные свойства. Общему признанию ведущей роли мутационной изменчивости у бактерий способствовала разработка ряда селективных методов ее выявления. Одним из них был метод «флуктуационного теста», разработанный в 1943 г. С. Луриа и М. Дельбрюком[66]. Метод основывался на учете возникновения фагоустойчивых клонов в популяции чувствительного к фагу штамма Escherichia coli. Его использование положило начало современной генетике бактерий.

Еще более простое доказательство значения мутационной изменчивости дал «метод перераспределения» клеток, разработанный X. Ньюкомбом (1949). Он основан на анализе роли фага при орошении фагофильтратом посевов фагочувствительных бактерий и на учете появления большего по сравнению с контролем числа устойчивых к фагу клеток за счет возникновения мутантных фагоустойчивых клеток.

Веское доказательство существования «преадаптивной» изменчивости было получено методом «отпечатков» бактерий (выросших на чашах‑репликах), созданным Дж. Ледербергом[67] и Э. Ледерберг в 1952 г. Этот метод позволил выявлять спонтанные мутации без обработки фагом или антибиотиками, т. е. в отсутствие специфических условий внешней среды. Еще более наглядно спонтанность возникновения мутантов была продемонстрирована с помощью метода непрямого отбора, разработанного в 1955 г. Л. Кавалли‑Сфорца и Дж. Ледербергом. В его основе лежит процесс разведения и обогащения исходной популяции, дающий практически чистую культуру. Данные, полученные с помощью указанных методов, убедили большинство исследователей в том, что основная доля бактериальных мутантов возникает за счет спонтанных и ненаправленных мутаций, частота которых сравнительно низка.

Важным событием в изучении природы мутаций было открытие биохимических (ауксотрофных) мутантов, т. е. микробов, потерявших в результате мутации способность самостоятельно синтезировать те или иные метаболиты и потому нуждающихся во включении этих метаболитов в питательную среду. Ауксотрофные мутанты были впервые обнаружены Дж. Бидлом и Э. Тейтумом в 1941 г. у плесневого грибка Neurospora crassa при облучении культуры ультрафиолетовыми лучами. Вслед за тем Дж. Ледерберг и Э. Тейтум (1946) обнаружили у отдельных мутантных клеток Escherichia coli утрату способности синтезировать некоторые аминокислоты и витамины.

Теория Бидла и Тейтума, выраженная формулой «один ген – один „фермент“», обобщила данные изучения механизмов, контролирующих образование ферментов, с помощью ауксотрофных мутантов. Впоследствии она была уточнена и в настоящее время формулируется как «один ген – одна макромолекула» (РНК или «полипептид»). Важность этих исследований определилась тем, что впервые была установлена связь между отдельным геном и конкретной химической реакцией, происходящей в клетке. Ауксотрофные мутанты стали успешно применяться и при разработке биологических методов определения различных аминокислот, витаминов азотистых оснований. Как показали исследования Ф. Райяна и Л. Шнейдера в конце 40‑х годов, признак потребности в факторах роста может служить маркером, как при исследовании динамики популяций, так и при анализе проблемы передачи генетического материала. Исследования с применением ауксотрофов положили начало биохимической генетике.

Восстановление биосинтетической активности у ауксотрофов (или реверсия к прототрофности) было впервые описано Ф. Райяном и Дж. Ледербергом в 1948 г. у Neurospora crassa. Это явление рассматривалось как результат либо реверсной мутации в том же локусе, либо мутации в другом локусе хромосомы, сцепленном с локусом, затронутым прямой мутацией (супрессорная мутация). Последующее изучение явления обратного мутирования у биохимических мутантов позволило уточнить механизмы этого процесса. Было показано, что ревертирование обязано не истинным обратным мутациям, а главным образом супрессорным мутациям, возникающим в другом месте генома и приводящим к восстановлению дикого фенотипа. Важный материал был получен также при изучении генетических факторов, регулирующих обмен углеводов, а в связи с этим и механизмов, контролирующих образование ферментов, а также мутирование морфологических признаков клеток, антигенных и вирулентных свойств. Данные по изучению этих мутантов в значительной мере взаимосвязаны (П. де Крюи, 1921; А. Александрини, 1931; В. Браун 40‑е годы).

Для раскрытия молекулярной сущности мутагенеза как главного механизма изменения наследственной информации решающее значение имела расшифровка в 1953 г. структуры молекулы ДНК Дж. Уотсоном и Ф. Криком (Нобелевская премия, 1962) (см. главу 23). Это фундаментальное открытие заложило основу изучения механизмов передачи наследственной информации у бактерий с помощью методов молекулярной биологии. Речь идет об исследовании трансформации, трансдукции, конъюгации и лизогенной конверсии.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: