Применение математики и кибернетики в биологии

 

Процесс проникновения математики в биологию имеет длительную историю. Однако сильнее всего он проявился в XX в. и главным образом в последние 20–25 лет. Это прежде всего связано с развитием самой биологии, ее теоретических представлений. Системы биологических понятий достигли той степени абстрактности и точности, при которой стало возможным использование математических моделей для описания биологических явлений. Кроме того, структура изучаемых в настоящее время биологических систем оказалась столь сложной, что потребовала для своего анализа разработки новых принципов исследования, основанных на точных математических методах.

Важную роль в математизации биологии сыграло взаимопроникновение наук. Биология издавна испытывала влияние представлений, возникавших в механике и физике. Достаточно вспомнить попытки сравнения скелета позвоночных с системой рычажных механизмов (Леонардо да Винчи, Дж. Борелли). Возникшая из этих попыток биомеханика начала особенно интенсивно развиваться в первой четверти XX в. (Я.И. Грдина, Н.А. Бернштейн и др.). Сближение биологической тематики с физическими и химическими проблемами является одним из путей проникновения в биологию математики, давно играющей важную роль в физике и химии.

Большое значение имели также некоторые идеи, возникшие вне биологии и проникшие в нее в последние десятилетия. Это главным образом идеи теории регулирования и теории информации. Они привели к тому, что существенно изменился подход к регуляторным системам организма, к работе рецепторов и т. д. Понятия «обратной связи», «информации», органически связанные с математическими представлениями, явились существенным каналом проникновения математики в биологию.

Как известно, в последние десятилетия в математике возник ряд новых направлений, связанных с изучением моделей систем высокой степени сложности. К ним относятся теория автоматов, теория игр, теория операций и др. В этой связи биология оказалась для математиков интересным объектом, на котором можно проверить силу новых теорий при помощи вновь созданных математических дисциплин и вычислительных машин.

Более того, источником новых математических идей стала сама биология, Некоторые примеры такого рода могут быть отмечены даже в биологии XIX в. Так, Г. Гельмгольц исследовал некоторые уравнения математической физики в связи со своими работами по физиологии слуха. Известно, что некоторые работы Р. Фишера по математической статистике были связаны с его занятиями биологией. Работы В. Вольтерры по интегральным уравнениям базировались на его исследованиях в области экологии.

Однако именно в настоящее время биология оказывается особенно привлекательной для математика. Сложность таких явлений, как работа мозга, взаимосвязи в биологических сообществах, высокая способность организмов к адаптации, размножению и т. д. привели к выводу, что для их описания потребуется создание новых математических конструкций. Так размышления о математических моделях размножения привели, например, Дж. Неймана к созданию теории самовоспроизводящихся автоматов. Именно биология как источник новых моделей, как наука, изучающая объекты, не имеющие аналогов в физике и технике, и потому позволяющая ставить совершенно новые задачи, привлекла к себе внимание таких математиков, как Р. Беллман, Н. Винер, Г. Вейль, И.М. Гельфанд (Ленинская премия, 1955), А.Н. Колмогоров (Ленинская премия, 1965), А.А. Ляпунов, Дж. Нейман и др.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: