Использование в биологии теории информации

 

Разработка теорий информации связана с работами Р. Хартли, В.А. Котельникова, А.Н. Колмогорова, К. Шеннона, А.Я. Хинчина и других. Вместе с этой теорией в науку вошли такие понятия, как количество информации, пропускная способность канала передачи информации, кодирование и декодирование информации и другие.

Универсальность этих понятий привела к тому, что информационный подход начал широко применяться и к биологическим проблемам. Большую роль в постановке биолого‑информационных проблем сыграли работы А.А. Ляпунова, сформулировавшего ряд задач, относящихся к исследованиям в области управления в биологических системах. С позиции теории информации в настоящее время рассматриваются процессы, протекающие в отдельных клетках, в организмах и в популяциях. Особенно плодотворным оказался информационный подход при изучении работы органов чувств и мозга. Возник и разрабатывается ряд проблем, связанных с выяснением принципов обеспечения помехоустойчивости и надежности элементов, осуществляющих переработку, передачу и хранение информации. С этих же позиций рассматриваются в настоящее время процессы коммуникации между животными, способы решения ими задач ориентации, навигации и локации, проблема памяти и другие проблемы, относящиеся к компетенции бионики.

Одним из наиболее фундаментальных результатов, определяющим в значительной мере состояние современной биологии и связанным с информационным подходом, является расшифровка генетического кода (см. также главы 23 и 24). Впервые эта проблема была, по‑видимому, сформулирована Э. Шредингером (1945), который мог поставить ее лишь в общей форме, так как тогда еще не была известна структура ДНК и ее генетическая роль.

Строгая и конкретная постановка и анализ задачи о генетическом коде связаны с исследованиями Г. Гамова (1954). Задача состояла в выяснении соответствия между последовательностями нуклеотидов в молекуле ДНК и последовательностью аминокислот в белках.

 

Информационный подход существен и для понимания других процессов, связанных с поведением и взаимодействием клеток, например, при заживлении ран, регенерации и т. д. При изучении иммунитета встают вопросы о том, как осуществляется процесс «узнавания» своих белков, каким образом чужеродный белок, побывавший в организме всего один раз, «запоминается» на всю жизнь, какое количество разных чужих белков может быть распознано и т. д. Все эти вопросы связаны с проникновением в биологию идей теории информаций.

Вероятно, наибольшее воздействие теория информации оказала на разделы физиологии, изучающие органы чувств и нервную систему. Исследование принципов переработки информации является здесь основным направлением экспериментальных работ. Физиологи в настоящее время интенсивно изучают способы кодирования сигналов об интенсивности света и звука, о цвете или частоте тона, процессы адаптации, явление константности восприятия и т. д. В связи с изучением работы рецепторов и нервной системы было предложено много моделей, имитирующих принципиальные стороны или механизмы процесса переработки информации нейронами. Значительную часть таких моделей составляют так называемые нервные сети.

 

Физиологические исследования последних лет показали, что органы чувств животных, как правило, не являются простой мозаикой рецепторов, каждый из которых независимо реагирует на свет или темноту, звук или его прекращение и т. д. Оказалось, что уже на уровне органов чувств существуют специальные структуры («детекторы»), которые могут выделять контуры изображения, углы, движущиеся предметы и т. д. Существенно, что эти операции осуществляются в органах чувств не в результате обучения, а вследствие самой конструкции органа, выработанной в процессе эволюции. Моделированию сетей, которые выделяют только определенные группы внешних сигналов или определенные признаки, посвящена большая серия работ.

 

 

Простая нейронная сеть, моделирующая работу летательной системы саранчи (по Д. Вилсону и И. Уолдрон, 1968).

Сеть состоит из четырех нейронов. Зачерненными кружками обозначены тормозные синапсы стрелками – возбуждающие; Показан характер импульсной активности в разных нейронах сети; а и б соответствуют разным уровням входного потока.

 

 

Помимо вопросов о принципах хранения, передачи и переработки сигналов теория информации занимается также проблемами надежности и борьбы с шумами. Эти проблемы возникли в технике Связи, при конструировании вычислительных машин и сложных комплексов, где большое число используемых элементов увеличивало вероятность получения ошибочных результатов. В качестве биологической проблемы вопрос о надежности мозга был поставлен еще опытами К. Лешли (1918–1933).

В математическую форму проблема надежности была облечена Дж. фон Нейманом (1952) и впервые рассмотрена им, а также Е. Муром и К. Шенноном (1956). Один из методов Повышения надежности, предложенный Нейманом, состоял в том, что выход каждого элемента заменялся пучком линии, а каждый элемент сети – схемой, которая оперировала с пучками входных и выходных; линий. Нейман оценил избыточность схемы, необходимую для достижения определенной надежности. Например, если вместо одного элемента, который ошибается один раз из 200, использовать 60 000 элементов, то ошибка будет возникать один раз на 1020 случаев.

Мур и Шеннон отметили связь задачи, рассмотренной Нейманом, с проблемой построения надежного кода для случаев, когда надежность передачи отдельного символа низка. Они показали, что при использовании других элементов схемы могут быть получены лучшие результаты и обеспечено то же повышение надежности при избыточности не в 60 000, а всего в 100 раз.

Одна из самых слабых сторон нервных сетей, подобных рассмотренным Мак‑Каллоком и Питтсом, – их крайне низкая надежность: выход из строя всего одного нейрона может принципиально изменить характер работы всей сети. В 1958 г. Мак‑Каллок предложил усложненную модель формального нейрона. В ней учтено, что порог нейрона может меняться во времени, принят закон суммации возбуждающих и тормозных входов, более близкий к реальному (возбуждение наступает, когда алгебраическая сумма входных сигналов превышает пороговое значение), а также учитывается существование пресинаптического торможения, т. е. используются входные волокна, которые могут блокировать прохождение сигнала по другим входам. С использованием этих элементов был рассмотрен ряд вопросов о конструировании сетей, устойчивых к шуму (У. Мак‑Каллок, Дж. Коуэн, Л. Вербик и др., 1960). Была решена задача о синтезе сетей, работа которых не меняется, когда порог всех нейронов одновременно сдвигается на одну или несколько единиц (логически стабильные сети). Поясняя значение этой модели, Мак‑Каллок отмечает, что дыхание не прекращается и при таких стадиях наркоза, когда пороги раздражения нейронов увеличиваются вдвое.

Далее были исследованы возможность и методы построения нейронных сетей, которые работают без ошибок при неодновременных и даже разнонаправленных сдвигах порогов образующих их элементов, а также при изменении веса синапсов, появлении новых связей между нейронами и при некоторой вероятности того, что нейрон не ответит на сверхпороговый сигнал или, напротив, самопроизвольно возбудится в отсутствие входного сигнала. При этом возникает задача построения сетей такого рода с использованием минимального числа нейронов и связей – задача во многих случаях еще далека от решения.

Постановка проблемы надежности привела к новому подходу ко многим вопросам биологии. И.И. Шмальгаузен (1958–1963), например, рассмотрел под этим углом зрения полигены (повторение генов со сходным выражением), диплоидность и полиплоидность организмов и т. п. Им затронут также вопрос о циркуляции информации в процессе смены поколений и в эволюции. Работами Шмальгаузена была установлена связь дарвиновской теории эволюции с теорией информации.

 

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: