Восстановление деталей машин металлизацией. Методы металлизации и область их применения

Характеристика и область применения металлизации. Металлизация является наиболее распространенным методом восстановления изношенных поверхностей и заключается в нанесении на деталь покрытия без расплавления ее поверхностного слоя. Покрытия наносятся на металлы, пластмассы, стекло, дерево, керамику и другие материалы, так как в процессе напыления температура изделия изменяется незначительно и обычно не превышает 150—200°С, что выгодно отличает ее от наплавки. Для создания покрытий используются различные металлы, сплавы и их соединения (оксиды, нитриды, карбиды и др.). Толщина покрытия наружных поверхностей тел вращения может быть 0,3—10 мм и более без ухудшения прочности сцепления. При металлизации внутренних поверхностей деталей типа втулок предельной считается толщина 2,5—3,0 мм, так как при большей толщине возможно отслаивание покрытия под действием внутренних напряжений.

Область применения металлизации при восстановлении деталей: — восстановление изношенных наружных и внутренних поверхностей деталей машин преимущественно цилиндрической формы (например, валов, штоков, втулок, вкладышей подшипников, цельных подшипников и др.);— создание на деталях поверхностного слоя с определенными свойствами (износостойкого, коррозионно-стойкого, антифрикционного, жаростойкого, сповышенной теплопроводностью или электропроводностью и т.д.);нанесение защитно-декоративных покрытий.

Применение металлизации особенно эффективно при восстановлении крупных деталей, когда стоимость металлизации не превышает 10 % стоимости детали. Механизм металлизации состоит в следующем. Напыляемый металл в виде проволоки, прутков, шнуров или в порошкообразном состоянии расплавляется в специальной установке каким-либо источником тепла и с помощью струи сжатого воздуха или инертного газа распыляется на мелкие частицы размером от 3 до 300 мкм, которые этой же струей переносятся на специально подготовленную поверхность детали. Большинство частиц металла за время полета от зоны плавления до поверхности детали, охлаждаясь, переходят из жидкого состояния в пластичное или твердое. При ударе о деталь твердые частицы расплющиваются, охватывая неровности на ее поверхности, и сцепляются с нею. Кроме того, расплющенные и разорванные края соседних частиц переплетаются и прочно соединяются между собой. В результате соударения между собой и с деталью частицы металла образуют на ее поверхности покрытие. Чем больше скорость частиц, а следовательно, сила удара, тем прочнее сцепление частиц с деталью и между собой.

Напыление покрытия осуществляется на практически холодную подложку, поэтому при охлаждении капель (частиц) напыляемого слоя в нем возникают внутренние («усадочные») напряжения. Таким образом, напыляемый металл соединяется с деталью за счет механического сцепления, адгезии, частично сварки и действия внутренних напряжений.

При газотермическом напылении источником тепловой энергии является пламя, образующееся в результате горения смеси кислорода и горючего газа (ацетилена, метана и др.). При электродуговом и плазменном напылении им является электрическая дуга, горящая между электродами в потоке газа, при индукционном — тепло, выделяющееся в наплавляемом изделии и материале под действием индуцированных в них токов, а при детонационном методе — энергия взрыва.

Для электродугового напыления в качестве присадочного материала используют проволоку, для детонационного — порошок, а для газопламенного и плазменного методов — оба вида материала. Широкое применение в ремонтном производстве получили электротермические методы напыления, при которых расплавление присадочного материала осуществляется теплом, образованным с использованием электрического тока: электрической дугой, индукционным нагревом и плазменной струей. Вид источника расплавления металла определяет особенности электродугового, плазменного и высокочастотного методов напыления, каждый из которых характеризуетсяопределенными достоинствами и недостатками, а также областью их эффективного применения,

Техпроцесс метализации

В общем случае он включает следующие основные операции: очистка и обезжиривание детали; предварительная механическая обработка напыляемых поверхностей; формирование на напыляемой поверхности определенного рельефа и шероховатости; защита не подлежащих напылению поверхностей; удаление технологических загрязнений; нанесение покрытия; очистка детали и снятие с нее защитных устройств, окончательная обработка детали; контроль качества обработки и покрытия. В ряде случаев для повышения прочности сцепления металлизированного слоя с деталью и его качества применяют указанные выше специальные методы, а также регулируют скорость охлаждения детали после металлизации.

Защита поверхностей детали, не подлежащих напылению. Участки детали, не подлежащие металлизации, защищают от попадания на них распыленного металла с помощью экранов из жести, асбестовых листов или других материалов. Отверстия и каналы должны быть закрыты пробками (заглушками).

Процесс металлизации при этом виде напыления осуществляется за счет энергии, выделяющейся при детонации — процессе химического превращения взрывчатого вещества, который происходит в очень тонком слое и распространяется по взрывчатому веществу в виде особого вида пламени со сверхзвуковой скоростью (в газовых смесях 1000—3500 м/с).

В установках для металлизации в качестве взрывчатого вещества используется смесь кислорода и ацетилена, детонация которой представляет разновидность горения газового топлива


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: