Введение. Данное учебное пособие имеет целью оказать учащимся помощь в систематизации, обобщении и углублении знаний по физике

Данное учебное пособие имеет целью оказать учащимся помощь в систематизации, обобщении и углублении знаний по физике, освоении методов и приемов решения задач при подготовке к итоговой аттестации.

Содержание учебного пособия соответствует программе по физике для студентов первого курса, обучающихся по специальностям 151901 Технология машиностроения, 190631 Техническое обслуживание и ремонт автомобильного транспорта, 260807 Технология продукции общественного питания.

Данное пособие включает:

· перечень рассматриваемых вопросов;

· систематизированное изложение основного теоретического материала (ориентирует учащихся на усвоение понятий, законов, закономерностей и т.д.);

· вопросы и задания для самоконтроля (они подобраны и сформулированы так, чтобы учащиеся могли проверить уровень своих знаний и умений по теме; вопросы и задания постепенно усложняются, что требует от учащихся для ответа и решения глубокого понимания физических законов, явлений и процессов, привлечения знаний из различных разделов физики);

· методические рекомендации по решению задач (последовательность действий, которые необходимо выполнить при решении задач, - от анализа условия задачи (его краткой записи, выполнение рисунка, схемы, чертежа, поясняющих условие задачи) до анализа и оценки полученного ответа);

· примеры решения задач (на примере решения наиболее типовых задач демонстрируется процесс построения и использования алгоритма решения задач на основе методических рекомендаций).

В приложении приведены тест и вариант контрольной работы, которую учащиеся выполняют самостоятельно.

В основе, так называемой классической, или ньютоновской, механики лежат три закона динамики, сформулированных И. Ньютоном в 1687 г. Эти законы играют исключительную роль в механике и являются (как и все физические законы) обобщением результатов огромного человеческого опыта.

Законы Ньютона рассматривают как систему взаимосвязанных законов и опытной проверке подвергают не каждый отдельный закон, а всю систему в целом. Ньютоновская механика оказалась настолько плодотворной, настолько могущественной, что у физиков сложилось представление о том, что любое физическое явление можно объяснить с помощью ньютоновских законов. Большинство физиков к концу XIX в. были убеждены в том, что они уже знают о природе всё, что можно было узнать. Однако наиболее проницательные физики понимали, что в знании классической физики есть слабые места. Так, например, английский физик У. Томсон (он же лорд Кельвин) говорил, что на горизонте безоблачного неба классической физики имеются два тёмных облачка: неудача попыток создания теории абсолютно чёрного тела и противоречивое поведение эфира – гипотетической среды, в которой предполагалось распространение световых волн. Эти факты получили своё объяснение в новых теориях – специальной теории относительности и квантовой механике.

В специальной теории относительности, созданной А. Эйнштейном в 1905 г., подверглись радикальному пересмотру ньютоновские представления о пространстве и времени. Этот пересмотр привёл к созданию «механики больших скоростей», или, как её называют, релятивистской механики. Новая механика не привела, однако, к полному отрицанию старой ньютоновской механики. Уравнения релятивистской механики, в пределе (для скоростей малых, по сравнению со скоростью света), переходят в уравнения классической механики. Таким образом, классическая механика вошла в релятивистскую механику как её частный случай и сохранила своё прежнее значение для описания движений, происходящих со скоростями значительно меньшими, чем скорость света.

Аналогично обстоит дело и с соотношениями в классической и квантовой механике, возникшей в 20-х годах прошлого века в результате развития физики атома.

Уравнения квантовой механики также дают в пределе (для масс больших, по сравнению с массами атомов) уравнения классической механики. Следовательно, классическая механика вошла в квантовую механику в качестве её предельного случая.

Таким образом, развитие науки не перечеркнуло классическую механику, а лишь показало её ограниченную применимость. Классическая механика, основывающаяся на законах Ньютона, является механикой тел больших (по сравнению с массой атомов) масс, движущихся с малыми (по сравнению со скоростью света) скоростями

ОСНОВЫ ДИНАМИКИ


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: