Внутренняя энергия, теплота и работа

В каждом теле, в каждом веществе в скрытом виде заключена внутренняя энергия, которая складывается из энергии движения и взаимодействия атомов, молекул, ядер и других частиц, внутриядерную и другие виды энергии, кроме кинетической энергии движения системы, и потенциальной энергии ее положения. Абсолютную величину внутренней энергии определить невозможно. Она представляет собой способность системы к совершению работы или передаче теплоты. Однако можно определить ее изменение U при переходе из одного состояния в другое:

Δ U = U 2 - U 1 ,

где U 2 и U 1- внутренняя энергия системы в конечном и начальном состояниях. Если Δ U > 0–внутренняя энергия системы возрастает, если Δ U < 0– внутренняя энергия системы убывает. U – термодинамическая функция состояния, так как ее количество не будет зависеть от пути и способа перехода системы, а будет определяться лишь разностью в этих состояниях. При переходе из одного состояния в другое система может обмениваться с окружающей средой веществом или энергией в форме теплоты и работы.

Теплота Q представляет собой количественную меру хаотического движения частиц данной системы или тела. Энергия более нагретого тела в форме теплоты передается менее нагретому телу. При этом не происходит переноса вещества.

Работа А является количественной мерой направленного движения частиц, мерой энергии, передаваемой от одной системы к другой за счет перемещения вещества от одной системы к другой под действием тех или иных сил, например гравитационных. Теплоту и работу измеряют в джоулях (Дж), килоджоулях (кДж) и мегаджоулях (МДж). Положительной считается работа, совершаемая системой против внешних сил (А > 0) и теплота, подводимая к системе (Q > 0). Теплота и работа зависят от способа проведения процесса, т.е. они являются функциями пути.

Количественное соотношение между изменением внутренней энергии, теплотой и работой устанавливает первый закон термодинамики:

Q = Δ U + А.

Если к системе подводится теплота Q, то она расходуется на изменение внутренней энергии системы Δ U и на совершение системой работы А над окружающей средой.

Теплоту и работу можно измерить, отсюда,

Δ U = Q – А.

Первый закон термодинамики является формой выражения закона сохранения энергии. Согласно этому закону, энергия не может ни создаваться, ни исчезать, но может превращаться из одной формы в другую. Его справедливость доказана многовековым опытом человечества.

Если система осуществляет переход из одного состояния в другое при постоянном объеме (реакция протекает в автоклаве), то работа расширения системы

А = р Δ V = 0

и

Q v = Δ U = U 2 – U 1,

т.е. если реакция протекает при постоянном объеме, то выделение или поглощение теплоты Q связано с изменением внутренней энергии системы.

Если на систему не действуют ни какие другие силы, кроме постоянного давления, т.е. химический процесс осуществляется в изобарных условиях, и единственным видом работы является работа расширения, то первый закон термодинамики запишется:

Q p = Δ U + p Δ V.

Подставив Δ U = U 2U 1, получим:

Q p = U 2U 1 + pV 2pV 1 = (U 2 + pV 2) ‑ (U 1 + pV 1).

Характеристическая функция

U + pV = H

называется энтальпией системы.

Q p = H 2 - H 1, и Q p = Δ H.

В случае изобарического процесса теплота, подведенная к системе, равна изменению энтальпии системы.

Абсолютное значение энтальпии системы определить невозможно, но экспериментально можно определить Q p, т.е. изменение энтальпии Δ Н, при переходе из одного состояния в другое. Н -это термодинамическая функция состояния. Если Δ Н > 0 - энтальпия системы возрастает, если Δ Н < 0-энтальпия системы уменьшается, т.е. теплота выделяется системой.

Как и другие характеристические функции, энтальпия зависит от количества вещества, поэтому ее изменение Δ Н, обычно относят к 1 моль и выражают в кДж/моль.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: