Золотое сечение» в архитектуре

 

 В книгах о «золотом сечении» можно найти замечание о том, что в архитектуре, как и в живописи, все зависит от положения наблюдателя, и что, если некоторые пропорции в здании с одной стороны кажутся образующими «золотое сечение», то с других точек зрения они будут выглядеть иначе. «Золотое сечение» дает наиболее спокойное соотношение размеров тех или иных длин.

Одним из красивейших произведений древнегреческой архитектуры является Парфенон (V в. до н. э.).

Парфенон имеет 8 колонн по коротким сторонам и 17 по длинным. выступы сделаны целиком из квадратов пентилейского мрамора. Благородство материала, из которого построен храм, позволило ограничить применение обычной в греческой архитектуре раскраски, она только подчеркивает детали и образует цветной фон (синий и красный) для скульптуры. Отношение высоты здания к его длине равно 0,618. Если произвести деление Парфенона по «золотому сечению», то получим те или иные выступы фасада.

Другим примером из архитектуры древности является Пантеон.

Известный русский архитектор М. Казаков в своем творчестве широко использовал «золотое сечение». Его талант был многогранным, но в большей степени он раскрылся в многочисленных осуществленных проектах жилых домов и усадеб. Например, «золотое сечение» можно обнаружить в архитектуре здания сената в Кремле. По проекту М. Казакова в Москве была построена Голицынская больница, которая в настоящее время называется Первой клинической больницей имени Н.И. Пирогова (Ленинский проспект, д. 5).

Еще один архитектурный шедевр Москвы – дом Пашкова – является одним из наиболее совершенных произведений архитектуры В. Баженова.

Прекрасное творение В. Баженова прочно вошло в ансамбль центра современной Москвы, обогатило его. Наружный вид дома сохранился почти без изменений до наших дней, несмотря на то, что он сильно обгорел в 1812 г. При восстановлении здание приобрело более массивные формы. Не сохранилась и внутренняя планировка здания, о которой дают представления только чертеж нижнего этажа.

Многие высказывания зодчего заслуживают внимание и в наши дни. О своем любимом искусстве В. Баженов говорил: «Архитектура – главнейшие имеет три предмета: красоту, спокойность и прочность здания... К достижению сего служит руководством знание пропорции, перспектива, механика или вообще физика, а всем им общим вождем является рассудок».

5. «Золотое сечение» в живописи

 

Переходя к примерам «золотого сечения» в живописи, нельзя не остановить своего внимания на творчестве Леонардо да Винчи. Его личность – одна из загадок истории. Сам Леонардо да Винчи говорил: «Пусть никто, не будучи математиком, не дерзнет читать мои труды».

Он снискал славу непревзойденного художника, великого ученого, гения, предвосхитившего многие изобретения, которые не были осуществлены вплоть до XX в. Нет сомнений, что Леонардо да Винчи был великим художником, это признавали уже его современники, но его личность и деятельность останутся покрытыми тайной, так как он оставил потомкам не связное изложение своих идей, а лишь многочисленные рукописные наброски, заметки, в которых говорится «обо всем на свете».

Он писал справа налево неразборчивым почерком и левой рукой. Это самый известный из существующих образец зеркального письма.

Портрет Моны Лизы (Джоконды) долгие годы привлекает внимание исследователей, которые обнаружили, что композиция рисунка основана на золотых треугольниках, являющихся частями правильного звездчатого пятиугольника. Существует очень много версий об истории этого портрета. Вот одна из них.

Однажды Леонардо да Винчи получил заказ от банкира Франческо де ле Джокондо написать портрет молодой женщины, жены банкира, Моны Лизы. Женщина не была красива, но в ней привлекала простота и естественность облика. Леонардо согласился писать портрет. Его модель была печальной и грустной, но Леонардо рассказал ей сказку, услышав которую, она стала живой и интересной.

Сказка

Жил-был один бедный человек, было у него четыре сына: три умных, а один из них и так, и сяк. И вот пришла за отцом смерть. Перед тем, как расстаться с жизнью, он позвал к себе детей и сказал: «Сыны мои, скоро я умру. Как только вы схороните меня, заприте хижину и идите на край света добывать себе счастья. Пусть каждый из вас чему-нибудь научится, чтобы мог кормить сам себя». Отец умер, а сыновья разошлись по свету, договорившись спустя три года вернуться на поляну родной рощи.

Пришел первый брат, который научился плотничать, срубил дерево и обтесал его, сделал из него женщину, отошел немного и ждет. Вернулся второй брат, увидел деревянную женщину и, так как он был портной, в одну минуту одел ее: как искусный мастер он сшил для нее красивую шелковую одежду. Третий сын украсил женщину золотом и драгоценными камнями – ведь он был ювелир. Наконец, пришел четвертый брат. Он не умел плотничать и шить, он умел только слушать, что говорит земля, деревья, травы, звери и птицы, знал ход небесных тел и еще умел петь чудесные песни. Он запел песню, от которой заплакали притаившиеся за кустами братья. Песней этой он оживил женщину, она улыбнулась и вздохнула.

Братья бросились к ней и каждый кричал одно и то же: «Ты должна быть моей женой».

Но женщина ответила: «Ты меня создал – будь мне отцом. Ты меня одел, а ты украсил – будьте мне братьями. А ты, что вдохнул в меня душу и научил радоваться жизни, ты один мне нужен на всю жизнь».

Кончив сказку, Леонардо взглянул на Мону Лизу, ее лицо озарилось светом, глаза сияли. Потом, точно пробудившись от сна, она вздохнула, провела по лицу рукой и без слов пошла на свое место, сложила руки и приняла обычную позу. Но дело было сделано – художник пробудил равнодушную статую; улыбка блаженства, медленно исчезая с ее лица, осталась в уголках рта и трепетала, придавая лицу изумительное, загадочное и чуть лукавое выражение, как у человека, который узнал тайну и, бережно ее храня, не может сдержать торжество.

Леонардо молча работал, боясь упустить этот момент, этот луч солнца, осветивший его скучную модель...

Трудно отметить, что замечали в этом шедевре искусства, но все говорили о том глубоком знании Леонардо строения человеческого тела, благодаря которому ему удалось уловить эту, как бы загадочную, улыбку. Говорили о выразительности отдельных частей картины и о пейзаже, небывалом спутнике портрета. Толковали о естественности выражения, о простоте позы, о красоте рук. Художник сделал еще небывалое: на картине изображен воздух, он окутывает фигуру прозрачной дымкой.

Несмотря на успех, Леонардо был мрачен, положение во Флоренции показалось художнику тягостным, он собрался в дорогу. Не помогли ему напоминания о нахлынувших заказах.

                                         Задачи.

 

  Рассмотрим правильный пятиугольник. Его диагонали образуют правильный звездчатый пятиугольник (пентаграмму). Все диагонали такого пятиугольника делят друг друга на отрезки, связанные между собой золотой пропорцией. Рассмотрим диагональ AD. Т. к. MBCNF правильный пятиугольник, то угол AFD равен 1080, угол ADF равен углу FAD и равен 360. По теореме синусов:
AD

=

sin1080

=

sin720

=

2cos360

AF sin360 sin360

 

cos360 = 1-2sin2180,
sin760 = 2sin360cos360 = 4sin180cos180(1-2sin2180),
sin760 = cos180 (не равно 0),
1 = 4sin180(1-2sin2180).
Значит, sin180 является одним из корней уравнения 1 = 4x(1-2x2)
или 8x3 - 4x + 1 = 0.
Разложим левую часть на множители: (2x-1)(4x2+2x-1) = 0.
 

 Корни этого уравнения: x1 = 1/2,

x2 = , x3 = . А так как sin180 есть положительное число, то

 

sin180 = .

Обозначим эту дробь как 1/2a. Тогда, cos360 = 1-2sin2180 = 1- 2/(4a2) =a/2. Таким образом, AD/AF = a. Но AF = AC, значит, AD/AF = AD/AC = a, и точка C делит отрезок AD золотым сечением.

5. Золотой прямоугольник.
Пусть отношение сторон прямоугольника равно a. Такие прямоугольники называются прямоугольниками золотого сечения или золотыми прямоугольниками. Если вписать в прямоугольник золотого сечения наиболее возможный квадрат, то снова получим золотой прямоугольник.

AB

=

a,

AD

AD = AE = EF, значит

EF

=

AB-EB

=

a2-1,

EB EB

Но a2-1 = a, так что получаем:

EF

=

a

EB

 

 

Книге II своих «Начал» Евклид сформулировал предложение 2.11, которое задает «деление отрезка в среднем и крайнем отношении»:

Предложение 2.11. Данную прямую разделить так, чтобы прямоугольник, заключенный между целой и одним из отрезков, был равен квадрату на оставшемся отрезке.

Рассмотрим это определение более детально. Для этого возьмем отрезок АВ и разделим его точкой С на две неравные части АС и СВ (Рис.1)


Рисунок 1. Деление отрезка в крайнем и среднем отношении («золотое сечение»)

Таким образом, Предложение 2.11 по существу представляет собой геометрическую задачу о построении прямоугольника, равновеликого квадрату. Подобные задачи были широко распространены в античной науке (вспомним знаменитую задачу о квадратуре круга). Евклид, однако, не указывает, какой именно отрезок (меньший или больший) должен быть выбран в Предложении 2.11 для того, чтобы сконструировать из него прямоугольник, равновеликий квадрату.

Легко доказать, что «задача Евклида», задаваемая Предложением 2.11, имеет решение только для случая, когда «одним из отрезков», образующим прямоугольник вместе с исходным отрезком, является меньший отрезок СВ. Действительно, если в качестве «одного из отрезков» выбрать больший отрезок АС, тогда Предложение 2.11 должно быть записано в следующем виде:

АВ´ АС = СВ 2

(1)

Если разделить обе части равенства (1) вначале на АВ, а затем на СВ, то получим следующую пропорцию:

(2)

Но эта пропорция приводит нас к противоречию. Действительно, отношение большего отрезка к меньшему (АС:СВ) всегда больше 1, в то время как отношение части отрезка ко всему отрезку (СВ: АВ) всегда меньше 1. Поэтому пропорция (2) является абсурдной. Отсюда мы можем сделать вывод, что Предложение 2.11 имеет решение только для случая, когда в качестве «одного из отрезков» выбирается меньший отрезок СВ.

Согласно Предложению 2.11 точка С должна быть выбрана таким образом, чтобы площадь прямоугольника со сторонами АВ и СВ равнялась площади квадрата со стороной АС. Запишем это утверждение в виде равенства:

АВ´ СВ = (АС)2

(3)

А теперь разделим обе части равенства (3) вначале на СВ, а затем на АС. В результате получим следующую пропорцию:

(4)

А это – ни что иное, как «задача о золотом сечении» в современной формулировке. Из этих рассуждений вытекает однозначный вывод, что «задача о делении отрезка в крайнем и среднем отношении» в формулировке Евклида и современная «задача о золотом сечении» — это разные формулировки одной и той же математической задачи!

Будем называть прямоугольник, который вытекает из Предложения 2.11 «прямоугольником Евклида». Если обозначить длины отрезков АВ, АС и СВ соответственно: АВ = а, АС = b и СВ = с, то выражение (3) может быть переписано в следующем виде:

а´ с = b 2

(5)

С учетом введенного определения мы можем представить «прямоугольник Евклида», как показано на Рис.2.


Рисунок 2. Прямоугольник Евклида

Как следует из Рис. 2, в «прямоугольнике Евклида» отношение большей стороны к меньшей равно отношению длины исходного отрезка к длине меньшего отрезка в Предложении 2.11; при этом согласно (5) его площадь равна квадрату длины большего отрезка.

Если в качестве исходного выбрать единичный отрезок (а= 1), то длины большего (b) и меньшего (c) отрезков, возникающих при деления единичного отрезка в крайнем и среднем отношении, всегда будут правильными дробями и тогда выражение (1) может быть записано в виде:

с = b 2.

(6)

Из выражения (6) вытекает следующая формулировка Предложения 2.11 для случая единичного отрезка:

Предложение 2.11 для единичного отрезка. Разделить единичный отрезок на две неравные части в такой пропорции, чтобы длина меньшего отрезка равнялась квадрату длины большего отрезка.

Обозначим пропорцию (4) через x. Тогда, учитывая, что АВ = АС + СВ, пропорцию (4) можно записать в следующем виде:

,

откуда вытекает следующее алгебраическое уравнение для вычисления искомой пропорции x:

x 2 = x + 1

(7)

Из «геометрического смысла» пропорции (4) вытекает, что искомое решение уравнения (7) должно быть положительным числом, откуда вытекает, что решением задачи о делении отрезка в крайнем и среднем отношении является положительный корень уравнения (7), который мы обозначим через t, то есть

t = .

Если исходный отрезок АВ в задаче на Рис. 1 будет единичным отрезком, то есть АВ = 1, то тогда отрезок АС = t -1, а отрезок СВ = t -2. С учетом этого замечания «прямоугольник Евклида» на Рис. 2 будет представлять собой «золотой» прямоугольник с отношением сторон АВ:СВ = t 2. Из этих рассуждений вытекает, что Евклид своим Предложением 2.11 не только сформулировал «задачу о делении отрезка в крайнем и среднем отношении» («золотое сечение»), но и открыл новый вид «золотого» прямоугольника с отношением сторон t 2 (Рис.2).

Заметим, что сформулированное выше Предложение 2.11 для единичного отрезка выражает следующее широко известное свойство «золотой пропорции»:

1 = t -1 + t -2 = 0,618 + 0,382

(8)

Заметим, что тождество (8) выражает знаменитый «Принцип Золотой Пропорции», который, начиная с античного периода, пронизывает человеческую науку и культуру.

В споре о том, знал ли Евклид «золотое сечение», необходимо четко различать математическое понятие «золотого сечения» и его название (то есть необходимо различать «суть» и «термин»). Сразу же отметим, что Евклид не пользовался термином «золотое сечение», предпочитая ему термин «деление отрезка в крайнем и среднем отношении». Но поскольку, как показано выше, задача о «делении отрезка в крайнем и среднем отношении», сформулированная Евклидом и выражаемая соотношением (3), и задача о «золотом сечении» в современной формулировке, выражаемая пропорцией (4), — это просто разные формулировки одной и той же геометрической задачи, то отсюда вытекает, что Евклид хорошо был знаком с «Принципом Золотой Пропорции» (8). И поэтому попытки некоторых современных исследователей доказать, что Евклид не был знаком с «золотым сечением», не выдерживают критики.


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: