Глава II. Теория поля

§1. ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ПОЛЯ

 

Теория поля – крупный раздел, физики, механики, математики, в котором изучаются скалярные, векторные, тензорные поля.

К рассмотрению скалярных и векторных полей приводят многие задачи физики, электротехники, математики, механики и других технических дисциплин.

Полем называется область V пространства, в каждой точке которой определено значение некоторой величины. Если каждой точке М этой области соответствует определенное число U=U(M), говорят, что в области определено, задано скалярное поле (или функция точки). Иначе говоря, скалярное поле – это скалярная функция U(M) вместе с ее областью определения. Если же каждой точке М области пространства соответствует некоторый вектор , то говорят, что задано векторное поле (или векторная функция точки).

Примерами скалярных полей могут быть поля температуры, атмосферного давления, плотности, электрического потенциала и т.д. Примерами векторных полей являются поле силы тяжести, поле скоростей частиц текущей жидкости (ветра), магнитное поле, поле плотности электрического тока и т.д.

Если функция U(M) ( ) не зависит от времени, то скалярное (векторное) поле называется стационарным; поле, которое меняется с течением времени называется нестационарным.

Далее будем рассматривать только стационарные поля.

Если V – область трехмерного пространства, то скалярное поле U можно рассматривать как функцию трех переменных x, y, z (координат точки M):

Наряду с обозначениями U=U(M), U=U(x; y; z), используют запись U=U (, где радиус-вектор точки М.)

Если скалярная функция U(M) зависит только от двух переменных, например x и y, соответствующее скалярное поле U(x; y) называют плоским.

Аналогично: вектор  можно рассматривать как векторную функцию трех скалярных аргументов x, y и z:  или . Вектор  можно представить в виде

где P(x; y; z), Q(x; y; z), R(x; y; z) – проекции вектора  на оси координат. Если в выбранной системе координат Oxyz одна из проекций вектора  равна 0, а две другие зависят только от двух переменных, то векторное поле называется плоским.

Векторное поле называется однородным, если  - постоянный вектор (P, Q, R – постоянные величины).

В дальнейшем будем полагать, что скалярные функции: U(x; y; z) – определяющая скалярное поле, P(x; y; z), Q(x; y; z), R(x; y; z) – задающее векторное поле, непрерывны вместе со своими частными производными.

 

§2. СКАЛЯРНОЕ ПОЛЕ

 

Пусть задано скалярное стационарное поле U = f(M) = f(x; y; z), где функцию f(x; y; z) будем всегда предполагать непрерывно дифференцируемой в рассматриваемой области.

Основной вопрос исследования скалярного поля есть вопрос об изменении функции U при переходе из одной точки пространства в другую. Для выяснения этого вопроса рассмотрим, прежде всего, геометрическое место точек, в которых величина U сохраняет постоянное значение. Это геометрическое место точек называют поверхностью уровня скалярного поля U. Ее уравнение в выбранной системе координат имеет вид: U(x; y; z) = C, где C = const. Следовательно, изменяя значения C, получаем семейство поверхностей уровня, которые заполняют всю область, где определено поле, и никакие две поверхности уровня, отвечающие различным значениям C, не имеют общих точек.

Задание всех поверхностей уровня с указанием соответствующих значений C равносильно заданию самого поля. Указанный способ изображения поля особенно удобен, если речь идет о поле, заданном в плоской области D двух переменных. В этом случае уравнение U(x,y) = C определяет, вообще говоря, некоторую кривую линию, называемую линией уровня плоского скалярного поля.

Такие линии различных скалярных полей всем хорошо известны: линии равных высот (горизонтали) удобны для изображения размера местности, линии равных температур (изотермы) или линии равных давлений (изобары) в метеорологии и т. д.

 


Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:  



double arrow
Сейчас читают про: